Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorShu-Chi Changen_US
dc.contributor.authorLian, Pei-Yuen_US
dc.identifier.citation1.行政院環保署(2010),土壤及地下水污染整治法之地下水污染管制標準。 2.土壤及地下水污染整治網 (2013),。 3.李柏村 (2005)。含水層異質性對NAPL垂直傳輸影響之研究。國立成功大學地球科學研究所碩士論文,台南市。 4.李俊德 (1999)。含氯碳氫化合物污染地下水之暴露社區居民死因勝算比。國立台灣大學流行病學研究所碩士論文,台北市。 5.涂秀娟 (2007)。奈米級零價鐵懸浮液之應用性探討,不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響。國立中山大學碩士論文,高雄市。 6.李冠勳 (2010)。三氯乙烯污染場址之微生物整治與監測。國立中山大學生物科學學系碩士論文,高雄市。 7.張永宜 (2007)。乳化奈米級零價鐵處理水溶液中之三氯乙烯。國立中山大學環境工程研究所碩士論文,高雄市。 8.張有義和郭蘭生 (1997)。膠體及界面化學入門。56-110,高立圖書有限公司,台北市。 9.曹桓光 (2001)。 「淺談微乳液」 ,物理雙月刊 (23卷四期) 。 10.陳姿文 (2011)。奈米乳化液於地下水層中傳輸研究。國立中興大學環境工程研究所碩士論文,台中市。 11.陳勝福、 陳卓然、 林士誠 (2001) 。土壤及地下水污染處理總論,中華技術。 12.黃慧貞 (2001)。土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究。國立中央大學環境工程研究所碩士論文,中壢市。 13.歐靜枝 (1989)。乳化融化技術實務。復漢出版社,台南市。 14.賴耿陽 (1999)。超音波工學理論實務:材料、機械、電機、化學、醫學之應用製作技術。二刷一版,復漢出版社。 15.高志明、葉琮裕 (2006)。利用整治列車系統處理受DNAPL污染之地下水。行政院環境保護署, EPA-95-U1U4-001 16.Arienzo, M. (2000). Degradation of 2, 4, 6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound. Chemosphere 40(4): 331-337. 17.Anderson, R. T. and D. R. Lovley (1997). Ecology and biogeochemistry of in situ groundwater bioremediation. Advances in microbial ecology 15: 289-350. 18.ATSDR. (2007). Trichloroethylene(TCE) toxicity. U.S. department of health and human services, agency for toxic substances and disease registry division of toxicology and environmental medicine. 19.Aulenta, F., A. Pera, S. Rossetti, M. Petrangeli Papini and M. Majone (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water research 41(1): 27-38. 20.Berge, N. D. and C. A. Ramsburg (2009). Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environmental science & technology 43(13): 5060-5066. 21.Bhatt, P., M. S. Kumar, S. Mudliar and T. Chakrabarti (2007). Biodegradation of chlorinated compounds—a review. Critical Reviews in Environmental Science and Technology 37(2): 165-198. 22.Bianchi‐Mosquera, G. C., R. M. Allen‐King and D. M. Mackay (1994). "Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen‐Releasing Compound." Ground Water Monitoring & Remediation 14(1): 120-128. 23.Borden, R. C. and C. M. Kao (1992). Evaluation of groundwater extraction for remediation of petroleum-contaminated aquifers. Water Environment Research: 28-36. 24.Brown, R. A., R. E. Hinchee, R. D. Norris and J. T. Wilson (1996). Bioremediation of petroleum hydrocarbons: A flexible, variable speed technology. Remediation Journal 6(3): 95-109. 25.Cassidy, D. P. and R. L. Irvine (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials 69(1): 25-39. 26.Chang, M.-l., S.-c. Wu and C.-y. Chen (1997). Diffusion of volatile organic compounds in pressed humic acid disks. Environmental science & technology 31(8): 2307-2312. 27.Chang, M. L., S. C. Wu, P. J. Chen and S. C. Cheng (2003).Infrared investigation of the sequestration of toluene vapor on clay minerals. Environmental toxicology and chemistry 22(9): 1956-1962. 28.Coulibaly, K. M. and R. C. Borden (2004). Impact of edible oil injection on the permeability of aquifer sands. Journal of contaminant hydrology 71(1): 219-237. 29.Dupont, R.R. (1993). Fundamentals of bioventing applied to fuel contaminated sites."Environmental Progress 12(1): 45-53. 30.Freedman, D. L. and J. M. Gossett (1989). Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. applied and Environmental Microbiology 55(9): 2144-2151. 31.Gerritse, J., V. Renard, J. Gottschal and J. Visser (1995). Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Applied microbiology and biotechnology 43(5): 920-928. 32.Harkness, M. and A. Fisher (2013). Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns. Journal of Contaminant Hydrology 151(0): 16-33. 33.He, J., K. M. Ritalahti, M. R. Aiello and F. E. Loffler (2003). Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology 69(2): 996-1003. 34.Holmberg, K., B. Jonsson, B. Kronberg and B. Lindman (2003). Surfactants and polymers in aqueous solution, John Wiley & Sons Chichester. 35.Hopkins, G. D. and P. L. McCarty (1995). Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environmental science & technology 29(6): 1628-1637. 36.Kuo, M.-C., C.-M. Chen, C. Lin, H. Fang and C.-H. Lee (2000). Surveys of volatile organic compounds in soil and groundwater at industrial sites in Taiwan. Bulletin of environmental contamination and toxicology 65(5): 654-659. 37.Kao, C., S. Chen and M. Su (2001). Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere 44(5): 925-934. 38.Kao, C., S. Chen, J. Wang, Y. Chen and S. Lee (2003). Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research 37(1): 27-38. 39.Kuo, T., K. Liang, Y. Han and K. Fan (2004). Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate. Water research 38(19): 4125-4134. 40.Lee, I.-S., J.-H. Bae and P. L. McCarty (2007). Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. Journal of contaminant hydrology 94(1): 76-85. 41.Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall and P. J. Gilmer (1988). Trichloroethylene biodegradation by a methane-oxidizing bacterium.Applied and Environmental Microbiology 54(4): 951-956. 42.Maymo-Gatell, X., I. Nijenhuis and S. H. Zinder (2001). Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environmental science & technology 35(3): 516-521. 43.McCarty, P. L., L. Semprini, M. E. Dolan, T. C. Harmon, C. Tiedeman and S. M. Gorelick (1991). In situ methanotrophic bioremediation for contaminated groundwater at St. Joseph, Michigan. In: On-site bioreclamation processes for xenobiotic and hydrocarbon treatment. Boston, MA: Butterworth-Heinemann: 16-40. 44.McCarty, P. L., L. Semprini, R. Norris, R. Hinchee, R. Brown, J. Wilson, D. Kampbell, M. Reinhard, E. Bouwer and R. Borden (1994). Ground-water treatment for chlorinated solvents. Handbook of bioremediation.: 87-116. 45.Mysona, E. S. and W. D. Hughes (1999). Remediation of BTEX in Groundwater with LNAPL Using Oxygen Releasing Materials (ORM). In situ bioremediation of petroleum hydrocarbon and other organic compounds: 283. 46.Nakhla, G. (2003). "Biokinetic modeling of in situ bioremediation of BTX compounds—impact of process variables and scaleup implications." Water Research 37(6): 1296-1307. 47.Pepelko, W.E., 2000. Toxicological review of vinyl chloride. USEPA, Washington D.C., pp. 57-58. 48.Rahm, B. G., R. M. Morris and R. E. Richardson (2006). Temporal expression of respiratory genes in an enrichment culture containing Dehalococcoides ethenogenes. Applied and environmental microbiology 72(8): 5486-5491. 49.Semprini, L., P. V. Roberts, G. D. Hopkins and P. L. McCarty (1990). A Field Evaluation of In‐Situ Biodegradation of Chlorinated Ethenes: Part 2, Results of Biostimulation and Biotransformation Experiments. Groundwater 28(5): 715-727. 50.Simmonds, A. C. (2007). Dechlorination rates in KB-1, a commercial trichloroethylene-degrading bacterial culture. Masters Abstracts International. 51.Suthersan, S. (1997). Remediation Engineering–Design ConceptsCRC Press. Inc, Boca Raton, FL. 52.Suthersan, S. S. (1996). Remediation engineering: design concepts, CRC Press. 53.Tieckelmann, R. and R. Steele (1991). Higher-assay grade of calcium peroxide improves properties of dough. Food technology 45. 54.Toukoniitty, B., J.-P. Mikkola, D. Y. Murzin and T. Salmi (2005). Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions. Applied Catalysis A: General 279(1): 1-22. 55.Travis, B. J. and N. D. Rosenberg (1997). "Modeling in situ bioremediation of TCE at Savannah River: Effects of product toxicity and microbial interactions on TCE degradation. Environmental science & technology 31(11): 3093-3102. 56.Tsai, T., C. Kao, T. Yeh and M. Lee (2008). "Chemical oxidation of chlorinated solvents in contaminated groundwater: review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 12(2): 116-126. 57.Vesper, S. J., L. C. Murdoch, S. Hayes and W. J. Davis-Hoover (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of hazardous materials 36(3): 265-274. 58.Vogel, T. M., C. S. Criddle and P. L. McCarty (1987). ES&T critical reviews: transformations of halogenated aliphatic compounds. Environmental Science & Technology 21(8): 722-736. 59.Wagoner, J. K. (1983). Toxicity of vinyl chloride and poly (vinyl chloride): a critical review. Environmental health perspectives 52: 61. 60.Wartenberg, D., D. Reyner and C. S. Scott (2000). Trichloroethylene and cancer: epidemiologic evidence. Environmental health perspectives 108(Suppl 2): 161. 61.Wilson, J. T. and B. H. Wilson (1985). Biotransformation of trichloroethylene in soil. Applied and Environmental Microbiology 49(1): 242. 62.Workman, D. J., S. L. Woods, Y. A. Gorby, J. K. Fredrickson and M. J. Truex (1997). Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environmental science & technology 31(8): 2292-2297. 63.Yager, R. M., S. E. Bilotta, C. L. Mann and E. L. Madsen (1997). Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York. Environmental science & technology 31(11): 3138-3147.en_US
dc.description.abstract氯化有機溶劑為土壤及地下水中常見的人為有機污染物質之一,其主要包含有四氯乙烯(perchloroethene, PCE)、三氯乙烯(trichloroethene, TCE)、三氯乙烷(trichloroethane, TCA )及四氯甲烷(carbon tetrachloride, CT)等。但因處理不當或是不慎洩漏導致土壤及地下水受到嚴重污染,進而危害人體健康及生態系。在整治地下水中低濃度之氯化有機物污染時,物理化學處理所需成本較高,故以生物處理進行此類受污染地下水整治較為適合。高氯數有機污染物需要以厭氧處理,而低氯數有機污染物則以好氧處理較佳,但厭氧微生物常因缺乏電子供給者於厭氧環境下無法有效進行還原脫氯反應;好氧微生物處理則因地下水環境中缺乏溶氧,而使得具毒性的氯乙烯累積。本研究以乳化液可當作電子供給者提供厭氧微生物時所需之電子;以奈米過氧化鈣因接觸到地下水而緩慢釋出氧氣,而提供好氧微生物所需之氧氣,繼續進行降解二氯乙烯及氯乙烯以解決其在地下水層中累積之問題。本研究自行配製的奈米過氧化鈣其顆粒小且均勻度高,其平均粒徑為20~40 nm,其純度達80%以上。不同油膜厚度包覆奈米過氧化鈣傳輸結果顯示油膜厚度愈厚,其延散作用與拖尾現象愈明顯。以乳化液加強生物降解TCE在3.0 PV時TCE的去除率在第一孔和第二孔達80%以上,而第三孔在3.7 PV時去除率為78%,且去除率隨乳化液的消耗而增加,仿照TMB法計算一階反應動力常數,可推估TCE在15天反應後,第一孔與第二孔之間λ值為0.0382 day-1,半衰期為18.15天。此結果可得知本研究之乳化液有助於微生物降解TCE,預期能提供實場氯化有機溶劑處理場址一良好之電子供給者及釋氧化合物,以增加處理效率。zh_TW
dc.description.abstractIf an aquifer is contaminated by chlorinated solvents, such as perchloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), carbon tetrachloride (CT), biological treatment is considered a better approach than physicochemical methods in terms of cost and impact to the subsurface ecosystem. However, success of bioremediation relies on both anaerobic and aerobic processes. Anaerobic process is often limited by the lack of electron donors in the contaminated groundwater while aerobic limited by the lack of dissolved oxygen. Due to dissolved oxygen shortage, vinyl chloride, an identified human carcinogen, could accumulate in the subsurface causing much higher environmental and health risks. To solve this problem, we synthsized emulsion and calcium peroxide nanoparticles to provide electrons to enhance reductive dechlorination and dissolved oxygen to promote aerobic oxidation and cometabolism, respectively. In this study, calcium peroxide nanoparticle (CPNP) with much lower cost was successfully synthesized. Its purity is higher than 80% and an average diameter between 20 and 40 nm. In a column study, comparing with a control column, samples from the first and second ports showed the removal rate is above 80% at 3.0 PV, and at the third port the removal rate is 78% at 3.7 PV. In addition, the consumption of emulsion increases as the removal increases. A first-order degradation rate constant was computed as 0.0382 day-1 with a half-life of 18.15 days between the first and the second ports after 15 days by applying trimethylbenzene method. These results suggest that emulsion can be applied as a bioremediation enhancer for TCE removal in groundwater.en_US
dc.description.tableofcontents摘要i Abstract ii 目錄iv 圖目錄vii 表目錄ix 第一章 前言 1 1.1研究緣起 1 1.2研究目的 2 第二章 文獻回顧 3 2.1含氯有機化合物之相關特性 3 2.1.1地下水含氯有機化物來源 3 2.1.2三氯乙烯之特性 4 2.1.3三氯乙烯對人體的危害 7 2.2地下水污染整治技術 9 2.2.1物理化學處理法 9 2.2.2生物復育 11好氧環境中含氯有機物生物降解 12厭氧環境中含氯有機物生物降解 14 2.3乳化液 16 2.3.1界面活性劑 16 2.3.2乳化 17 2.3.3乳化液製備 18 2.4釋氫與釋氧化合物 21 2.4.1釋氫化合物 21 2.4.2釋氧化合物 22過氧化鈣 23 第三章 研究方法 25 3.1實驗藥品 25 3.2實驗設備 26 3.3實驗架構與流程 27 3.4菌液培養 28 3.5奈米過氧化鈣 29 3.5.1奈米過氧化鈣顆粒製備 29 3.5.2乳化液包覆奈米過氧化鈣 29 3.6奈米過氧化鈣基本特性分析 30 3.6.1高解析X光繞射儀 30 3.6.2掃描式電子顯微鏡分析 30 3.6.3 X光能量散射光譜儀 31 3.7管柱實驗 31 3.7.1管柱組裝 31 3.7.2 K值量測 35 3.7.3管柱實驗方法 36 乳化液包覆奈米過氧化鈣傳輸 36乳化液和奈米過氧化鈣加強微生物降解 37 3.8三氯乙烯生物降解產物分析 37 3.8.1自動頂空採樣器 37 3.8.2氣相層析儀 37 3.9總有機碳分析儀 38 3.10總菌數-濾膜法 39 第四章 結果與討論 40 4.1奈米過氧化鈣 40 4.1.1過氧化鈣製備結果 41 4.2乳化液包覆奈米過氧化鈣之管柱傳輸 48 4.2.1 K值量測 48 4.2.2追蹤劑傳輸結果 49 4.2.3不同油膜厚度之乳化液包覆奈米過氧化鈣之傳輸 50 4.3三氯乙烯之生物降解 57 4.3.1量測K值 57 4.3.2追蹤劑傳輸結果 58 4.3.3三氯乙烯與乳化液達平衡試驗 60 4.3.4乳化液加強生物降解三氯乙烯 64空白組降解三氯乙烯之情形 64實驗組降解三氯乙烯之情形 65微生物降解三氯乙烯與其他文獻比較與討論 70 第五章 結論與建議 72 5.1結論 72 5.2建議 73 第六章 參考文獻 74zh_TW
dc.subjectcalcium peroxide nanoparticleen_US
dc.titleColumn study on application of emulsion and calcium peroxide nanoparticle to enhance biodegradation of trichloroetheneen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.