Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5805
標題: 以c-di-GMP評估生物膜之生成潛力並探討MBR操作參數對生物膜積垢之影響
Using c-di-GMP to evaluate biofouling potential of MBR system under different operating conditions
作者: 俞孟序
Yu, Meng-Hsu
關鍵字: 薄膜生物反應器;MBR;評估積垢潛力;cyclic-di-GMP;fouling potential
出版社: 環境工程學系所
引用: Bailey, J., Bemberis, I., Presti, J. (1971) Phase I Final Report – Shipboard sewage treatment system. General Dynamics Electric Boat Division NTIS. Bemberis, I., Hubbard, P. J., Leonard, F. B. (1971) Membrane sewage treatment systems – potential for complete wastewater treatment. American Society of Agricultural Engineers Winter Meeting. 71: 1-28. Bure, T., Cumin, J. (2010) MBR module design and operation. Desalination 250: 1073-1077. Chang, I. S., Lee, C. H. (1998) Membrane filtration characteristics in membrane-coupled activated sludge system—the effect of physiological states of activated sludge on membrane fouling. Desalination 120: 221-233. Chang, S. (2011) Application of submerged hollow fiber membrane in membrane bioreactors: Filtration principles, operation, and membrane fouling. Desalination 283: 31-39. Charcosset, C. (2012) Membrane Processes in Biotechnologies and Pharmaceutics. 1-41. Elsevier. Oxford. United Kingdom. Cheng, L. H., Yang, Y. C., Chen, J., Lin, Y. H., Wang, S. H. (2011) A new view of membrane fouling with 3D ultrasonic imaging techniques: Taking the canola oil with phospholipids for example. Journal of Membrane Science 372: 134-144. Choy, W. K., Zhou, L., Syn, C. K. C., Zhang, L. H., Swarup, S. (2004) MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species. Journal of Bacteriology 186: 7221-7228. Cicek, N., Winnena, H., Suidana, M. T., Wrenna, B. E., Urbainb, V., Manemb, J. (1998) Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Research 32: 1553-1563. Clech, P. L., Jeffersona, B., Changb, I. S., Judd, S. (2003) Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science 227: 81-93. Clech, P. L., Fanea, A., Lesliea, G., Childress, A. (2005) MBR focus: The operator’s perspective. Filtration and Separation 42: 20-23. Clech, P. L., Chen, V., Fane, T. A. G. (2006) Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science 284: 17-53. Cornel, P., Wagner, M., Krause, S. (2003) Investigation of oxygen transfer rates in full scale membrane bioreactors. Water Science and Technology 47: 313-319. Cotter, P. A., Stibitz, S. (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Current Opinion of Microbiology 10: 17-23. Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, N., Giese, B., Jenal, U. (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes & Development 23: 93-104. Dufresne, R., Lebrun, R. E., Lavallee, H.C. (1997) Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreactor. Canadian Journal of Chemical Engineering 75: 95-103. Eshed, L., Yaron, S., Dosoretz, C. G. (2008) Effect of Permeate Drag Force on the Development of a Biofouling Layer in a Pressure-Driven Membrane Separation System. Applied and Environmental Microbiology 74: 7338-7347. Fane, A., Chang, S. (2002) Membrane Bioreactors: Design and Operation Options. Filtration and Separation 39: 26-29. Fang, H. H. P., Shi, X. L. (2005) Pore fouling of microfiltration membranes by activated sludge. Journal of Membrane Science 264: 161-166. Field, R. W., Wu, D., Howell, J. A., Gupta, B. B. (1995) Critical flux concept for microfiltration fouling. Journal of Membrane Science 100: 259-272. Fineran, P. C., Williamson, N. R., Lilley, K. S., Salmond, G. P. (2007) Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein PigX. Journal of Bacteriology 189: 7653-7662. Flemming, H. C. (2002) Biofouling in water systems - cases, causes and countermeasures. Applied Microbiology and Biotechnology 59: 629-640. Gander, M., Jefferson, B., Judd, S. (2000) Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology 18: 119-130. Gil, J. A., Túa, L., Rueda, A., Montaño, B., Rodríguez, M., Prats, D. (2010) Monitoring and analysis of the energy cost of an MBR. Desalination 250: 997-1001. Gjermansen, M., Ragas, P., Sternberg, C., Molin, S., Tolker-Nielsen, T. (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environmental Microbiology 7: 894-904. Greenberg, A., Trussel, R. R., Clesseeri, L. S. (1985) Standard methods for the examination of water and wastewater. American Public Health Association Washinton. DC. 16th ed. 1268. Guglielmi, G., Chiarani, D., Judd, S. J., Andreottola, G. (2007) Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment. Journal of Bacteriology 289: 241-248. Hanft, S. (2006) Membrane bioreactors in the changing world water market. Business Communications Company Inc. report C-240. Hengge, R. (2009) Principles of c-di-GMP signaling in bacteria. Nature Reviews Microbiology 7: 263-273. Holland, K., Busby, S. J., Lloyd, G. S. (2007) New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS Microbiology Letters 274: 89-94. Hong, S. P., Baea, T.H., Taka, T.M., Hong, S., Randall, A. (2002) Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination 143: 219-228. Huang, X., Gui, P., Qian, Y. (2001) Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry 36: 1001-1006. Hughes, D. , Tirlapur, U. K., Field, R., Cui, Z. (2006) In situ 3D characterization of membrane by yeast suspensions using two-photon femtosecond near infrared non-linear optical imaging. Journal of Membrane Science 280: 124-133. Hwang, K. J., Lin, T. T. (2002) Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. Journal of Membrane Science 199: 41-52. Innerebner, G., Insama, H., Franke-Whittlea, I. H., Wett, B. (2007) Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation. Systematic and Applied Microbiology 30: 408-412. Jenal, U., Malone, J. (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annual Review of Genetics 40: 385-407. Jiang, T., Kennedy, M. D., Guinzbourg, B. F., Vanrolleghem, P. A., Schippers, J. C. (2005) Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism. Water Science and Technology 51: 19-25. Judd, S. (2002) Submerged Membrane Bioreactors: Flat Plate or Hollow Fiber. Filtration and Separation 39: 30-31. Judd, S. (2006) The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Elsevier. Oxford. United Kingdom. Judd, S., Jefferson, B. (2003) Membranes for industrial wastewater recovery and re-use. Elsevier. Oxford. United Kingdom. Kachlany, S. C., Levery, S. B., Kim, J. S., Reuhs, B. L., Lion, L. W., Ghiorse, W. C. (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environmental Microbiology 3: 774-784. Liao, B. Q., Allen, D. G., Droppo, I. G., Leppard, G. G., Liss, S. N. (2001) Surface properties of activated sludge and their role in bioflocculation and settleability. Water Research 35: 339-350. Liao, B. Q., Bagley, D. M., Kraemer, H. E., Leppard, G. G., Liss, S. N. (2004) A review of biofouling and its control in membrane separation bioreactors. Water Environment Research 76: 425-436. Liss, S. N., Droppo, I. G., Flannigan, D. T., Leppard, G. G. (1996) Floc architecture in wastewater and natural riverine systems. Environmental Science & Technology 30: 680-686. Liss, S. N. (2002) Microbial flocs suspended biofilms. The Encyclopaedia of Environmental Microbiology 4: 2000-2012. Liu, R., Huang, X., Sun, Y. F., Qian, Y. (2003) Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Process Biochemistry 39: 157-163. Liu, Y., Yang, C.H., Li, J. (2007) Influence of extracellular polymeric substances on Pseudomonas aeruginosa transport and deposition profiles in porous medium. Environmental Science & Technology 41:198-205. Marrot, B., Barrios-Martinez, A., Moulin, P., Roche. N. (2004) Industrial Wastewater Treatment in a Membrane Bioreactor: A Review. Environmental Progress 23: 59-68. Metcalf, E. (2007) Wastewater Engineering-Treatment and Reuse. Fourth edition. McGraw-Hill. New York. Mota, M., Teixeira, J. A., Yelshin, A. (2002) Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Separation and Purification Technology 27: 137-144. Ng, A. N. L., Kim, A. S. (2007) A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination 212: 261-281. Nichols, N. N., Harwood, C. S. (1999) An aerotaxis transducer gene from Pseudomonas putida. FEMS Microbiology Letters 182: 177-183. Park, J. S., Yeon, K. M., Lee, C. H. (2005) Hydrodynamics and microbial physiology affecting performance of a new MBR, membrane-coupled high performance compact reactor. Desalination 172: 181-188. Paul, R., Weiser, S., Amiot, N. C., Chan, C., Schirmer, T., Giese, B., Jenal1, U. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes & Development 18: 715-727. Pearce, G. (2007) Introduction to membranes: Membrane selection. Filtration & Separation 44: 35-37. Psoch, C., Schiewer, S. (2005) Long-term study of an intermittent air sparged MBR for synthetic wastewater treatment. Journal of Membrane Science 260: 56-65. Roberts, J. A., Sutton, P. M., Mishra, P. N. (2000) Application of the membrane biological reactor system for combined sanitary and industrial waste water treatment. International Biodeterioration & Biodegradation 46: 37-42. Romero, C. A., Davis, R. H. (1991) Experimental verification of the shear-induced hydrodynamic diffusion model of crossflow microfiltration. Journal of Membrane Science 62: 249-273. Römling, U., Gomelsky, M., Galperin, M. Y. (2005) C-di-GMP: the dawning of a novel bacterial signaling system. Molecular Microbiology 57: 629-639. Römling, U., Amikam, D. (2006) Cyclic di-GMP as a second messenger. Current Opinion in Microbiology 9: 218-228. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G. A., van Boom, J. H., Benziman, M. (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylate. Nature 325: 279-281. Ryan, R. P., Fouhy , Y., Lucey , J. F., Crossman, L. C., Spiro, S., He, Y. W., Zhang, L. H., Heeb, S., Cámara, M., Williams, P., Dow, J. M. (2006) Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences 103: 6712-6717. Saville, R. M., Rakshe, S., Haagensen, J. A. J., Shukla, S., Spormann, A. M. (2011) Energy-Dependent Stability of Shewanella oneidensis MR-1 Biofilms. Journal of Bacteriology 193: 3257-3264. Seo, Y., Jang, A., Bishop, P. L. (2007) Organic mulch biowall for PAH contaminated groundwater remediation. European Journal of Soil Biology 43: 304-309. Shen, Y., Zhao, W., Xiao, K., Huang, X. (2009) A systematic insight into fouling propensity of soluble microbial products in membrane bioreactors based on hydrophobic interaction and size exclusion. Journal of Membrane Science 346: 187-193. Smith, C.V., Gregorio, D., Talcott, R. M. (1969) The use of ultrafiltration membrane for activated sludge separation. Proceeding of the 24th Annual Purdue Industrial Waste Conference. Purdue University. West Lafayette. Indiana.1300-1310. Smith, P. J., Vigneswaran, S., Ngoa, H. H., Ben-Aimb, R., Nguyen, H. (2005) Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor. Journal of Membrane Science 255: 99-106. Song, L. F., Elimelech, M. (1995) Particle deposition onto a permeable surface in laminar-flow. Journal of Colloid and Interface Science 173: 165-180. Stepheson, T., Judd, S., Jefferson, B., Brindle, K. (2000) Membrane bioreactors for wastewater treatment. IWA Publishing. London. Sun, C., Fiksdal, L., Hanssen-Bauer, A., Rye, M. B., Leiknes, T. (2011) Characterization of membrane biofouling at different operating conditions (flux) in drinking water treatment using confocal laser scanning microscopy (CLSM) and image analysis. Journal of Membrane Science 382: 194- 201. Suzuki, K., Babitzke, P., Kushner, S. R., Romeo, T. (2006) Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes & Development 20: 2605-2617. Tamayo, R., Pratt, J. T., Camilli, A. (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Review of Microbiology 61: 131-148. Tanaka, T., Abe, K. I., Asakawa, H., Yoshida, H., Nakanishi, K. (1994) Filtration characteristics and structure of cake in crossflow filtration of bacterial suspension. Journal of Fermentation and Bioengineering 78: 455-461. Thormann, K. M., Duttler, S., Saville, R. M., Hyodo, M., Shukla, S., Hayakawa, Y., Spormann, A. M. (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic- di-GMP. Journal of bacteriology 188: 2681-2691. Trouve, E., Urbain, V., Manem, J. (1994) Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Water Science and Technology 30: 151-157. Trussell, R. S., Merlo, R. P., Hermanowicz, S. W., Jenkins, D. (2006) The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater. Water Research 40: 2675-2683. Tschowri, N., Busse, S., Hengge, R. (2009) The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue light response of Escherichia coli. Genes & Development 23: 522-534 . Wicaksana, F., Fane, A. G., Chen, V. (2006) Fiber movement induced by bubbling using submerged hollow fiber membranes. Journal of Membrane Science 271: 186-195. Wu, S. C., Lee, C. M. (2011) Correlation between fouling propensity of soluble extracellular polymeric substances and sludge metabolic activity altered by different starvation conditions. Bioresource Technology 102: 5375-5380. Yamamoto, K., Hiasa, M., Mahmood, T., Matsuo, T. (1989) Direct solid–liquid separation using hollow fiber membrane in an activated sludge aeration tank, Water Science & Technology21: 43-54. Zhan, S., Houten, R. V., Eikelboom, D. H., Doddem, H., Jiang, Z., Fan, Y., Wang, J. (2003) Sewage treatment by a low energy membrane bioreactor. Bioresource Technology 90: 185-192. 於維芬。2010。污泥停留時間對薄膜生物反應槽中胞外聚合物形成與積垢速率之影響。碩士論文。國立交通大學環境工程所。新竹。 經濟部水利署網站 http://www.wra.gov.tw/
摘要: 
水是人類賴以維生之資源,也是地球生命之源頭,因此水資源之重要性不言可喻。台灣身為島國,地形先天限制造成水資源汲取不易,再加上水價過低導致普遍國民缺乏節約用水概念,因此水資源浪費之情形於台灣屢見不鮮,衍生出大量廢污水處理以及回收再利用之需求。傳統污水處理程序需要設置重力沉降單元進行固液分離,額外增加污水廠占地面積及建造成本,且無法處理高有機負荷及新興產業之廢水,導致處理廢水種類受限,而近年來國外發展快速之薄膜生物反應器(membrane bio-reactor-MBR)技術深受重視;該技術具有節省成本、高處理效率及多樣化處理廢水特性等優點,能取代傳統廢水處理程序,並應用於不同領域。
MBR發展過程中遭遇到最主要障礙為薄膜積垢(fouling),其中微生物於薄膜表面生成之生物膜(biofilm),亦貢獻部分生物積垢(biofouling)。而近年來於真細菌體內發現之二級訊號傳遞物(second messenger )bis-(3''-5'')-cyclic diguanosine monophosphate(cyclic-di-GMP)扮演調控微生物生命型態(life style)轉變之重要物質,與生物膜形成息息相關,因此本研究將探討MBR系統於不同操作條件下(食微比與溶氧),薄膜積垢情形與菌體內cyclic-di-GMP濃度變化,以評估生物膜之生成潛力,應用於預防生物積垢之目的。
在MBR系統調整不同食微比之積垢實驗中,不論溶氧高或低,將食微比從0.2 day-1提高至10 day-1皆能有效促進懸浮態細胞生長。除了懸浮細胞濃度外,大部分情況下,提高食微比亦可增加細胞內之cyclic-di-GMP濃度、生物膜含量、sCOD去除率以及孔洞內阻抗比例。在食微比為0.2 day-1條件下,雖無法產生大量cyclic-di-GMP與生物膜,但試程結束時(72小時)皆具有最高之總阻抗,故推論當細胞處於基質受限情況下,生成之生物膜結構將會改變,且此壓力條件下生成之生物膜能造成薄膜嚴重積垢。
在MBR系統調整不同溶氧之積垢實驗中,可發現溶氧最主要影響系統細胞內之cyclic-di-GMP濃度與生物膜含量。因為Pseudomonas putida體內之MorA酵素能感受環境中溶氧與調控細胞之鞭毛合成,且具有GGDEF與EAL domain(Choy et al., 2004),當溶氧不受限制時,一方面減少鞭毛合成,另一方面則提升細胞內之cyclic-di-GMP濃度進而生成大量生物膜,故高溶氧組別細胞內之cyclic-di-GMP濃度與生物膜含量皆高於低溶氧組別。

雖然細胞內之cyclic-di-GMP濃度能反應出系統中,生物膜含量變化趨勢,但不一定能對應至薄膜積垢程度變化,因為在不同壓力條件下(低溶氧或低食微比),雖然生物膜含量較低,但生物膜結構卻轉變成容易阻塞之型態,故少量的生物膜卻造成嚴重積垢。而且懸浮態細胞生長與代謝產物所造成之濾餅以及孔洞內阻抗亦為總阻抗之一部分,所以若要以細胞內之cyclic-di-GMP濃度,評估系統生成生物膜之潛力是可行的,但不一定適合做為薄膜積垢程度指標。

Water is regarded as the origin of life and one of the most important resources on the earth. In Taiwan, owing to difficult water acquirement and unlimited water usage which caused by topographic limitation and unsuitable water price, respectively. Such higher fresh water stress would generate more wastewater treating and recycling requirement. In typical, the construction cost and area requirement of traditional wastewater treatment plant is high, because it needs secondary sedimentation unit to complete solid-liquid separation. Furthermore, several types of wastewater are not treatable through traditional wastewater treatment process. Therefore, we pay much attention to a noval technique membrane bioreactor(MBR).
MBR has a lot of advantages such as high treating efficiency, low treating cost and comprehensive wastewater treatment application. However, the major obstacle of MBR is membrane fouling. And biofilm which formed by microorganism on the membrane also contribute to biofouling level. Recently, people found a special second messenger called bis-(3''-5'')-cyclic diguanosine monophosphate(cyclic-di-GMP) in eubacteria. Cyclic-di-GMP can control “life style” conversion in microorganism and correlate to biofilm forming ability. Therefore, we measure membrane fouling and cyclic-di-GMP level in cell under different condition(food to microorganism ratio–F/M and dissolved oxygen–DO) to evaluate biofilm forming propensity in MBR.
Under different F/M, suspended biomass growth would increase while F/M increases from 0.2 day-1 to 10 day-1. Besides, cyclic-di-GMP concentration, biofilm content, sCOD removal rate and Rp would also increase while F/M increases in most situations. Although microorganism would not generate large amount of cyclic-di-GMP and biofilm under starvation(F/M = 0.2 day-1), but total resistance become highest at the end of all experiments. It probably due to conversion of biofilm components or structure. Making it more resistant to permeate and causing severe fouling under substrate stress.
Under different DO, cyclic-di-GMP concentration, biofilm content and total resistance would increase when DO is unlimited. Because the enzyme MorA of Pseudomonas putida can control flagella synthesize and mediate cyclic-di-GMP concentration by GGDEF and EAL domain(Choy et al., 2004). Therefore, we suppose that Pseudomonas putida would decrease flagella synthesis and increase cyclic-di-GMP concentration to enhance biofilm forming ability for retaining at DO sufficient environment.
Cyclic-di-GMP concentration is correlated to biofilm content and fouling level under different DO but not F/M. Because Pseudomonas putida would response to environmental stresses in different level. It seems that it is more sensitive to DO than F/M. Moreover, because Rc and Rp also contribute to total resistance. It makes prediction of biofouling more uncertain.
URI: http://hdl.handle.net/11455/5805
其他識別: U0005-2407201216064500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.