Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5807
DC FieldValueLanguage
dc.contributor魏銘彥zh_TW
dc.contributor.author廖世凱zh_TW
dc.contributor.authorLiao, Shih-Kaien_US
dc.contributor.other環境工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:35:42Z-
dc.date.available2014-06-06T06:35:42Z-
dc.identifierU0005-2008201214535800en_US
dc.identifier.citation[1] 陳維新, 能源概論第五版: 高立圖書有限公司, 2011. [2] 曲新生 and 陳發林, 氫能技術: 五南圖書出版股份有限公司, 2006. [3] 毛宗強編著 and 張勝雄,管鴻,林矩民,王鴻猷編修, 氫能-21世紀的綠色能源 新文京開發出版股份有限公司, 2008. [4] A. FUJISHIMA and K. HONDA, "Electrochemical Photolysis of Water at a Semiconductor Electrode " nature, vol. 238, p. 37, 1972. [5] BP(英國石油公司), Statistical review of world energy, 2011. [6] IEA(國際能源總署), World Energy Outlook 2011. [7] 台灣行政院經濟部能源局網站. (2012). 油價資訊管理與分析系統. Available: http://210.69.152.10/oil102 [8] A. C. D. International. (2012). Available: http://www.acdi.net [9] 劉憶如, "2011年國際經濟情勢展望," vol. 第9卷,第1期, pp. 23-30, 2011. [10] R. A. HOUGHTON, "Aboveground Forest Biomass and the Global Carbon Balance," Global Change Biology, pp. 11, 945–958, 2005. [11] 台灣行政院經濟部能源局網站. (2012). 能源產業溫室氣體減量資訊網. Available: http://www.cadiis.com.tw/energy/images/_energy/knowledge/co2-trend-99.pdf [12] 台灣行政院環保署網站. (2012). 環保署網站新聞專區. Available: http://ivy5.epa.gov.tw/enews/fact_index.asp [13] R. A. Hinrichs and M. Kleinbach, Energy, Its Use and Environment,Harcourt Inc., 2006. [14] 陳建志, 許妙行, 蔡佳玲, 林東緯, 何幸蓉, 黃郁棻, 李彥君, 黃如薏, and 楊鏡堂, "再生能源之發展趨勢與前瞻," 科技發展政策報導, vol. 3, pp. 1-26, 2008. [15] 王革華, 能源與永續發展: 新文京出版社, 2008. [16] R. A. Ristinen and J. J. Kraushaar, Energy and the Environment: John Wiley & Son, Inc., 2006. [17] 再生能源網. (2012). Available: http://www.re.org.tw/RE2/ [18] 吳耿東 and 李宏台, "化腐朽為能源," 科學發展, vol. 第383期 pp. 20-27, 2004. [19] 台灣經濟部能源局網站. (2012). 能源報導. Available: http://energymonthly.tier.org.tw/ [20] 張超群, "生質能源發展現況與未來," 工研院IEK中心,能源組, 2007. [21] H. Balat and E. Kırtay, "Hydrogen from biomass–Present scenario and future prospects," International Journal of Hydrogen Energy, vol. 35, pp. 7416-7426, 2010. [22] M. Chanon, Homogeneous photocatalysis vol. 2: John Wiley & Sons Inc, 1997. [23] 馬振基, "奈米材料科技原理與應用," 全華科技圖書股份有限公司, 2005. [24] 曾堯宜, "奈米光觸媒技術發展與其應用市場範圍簡介," 工研院能環所, 2004. [25] W. Stumm, "Chemistry of the solid-water interface John Wiley & Sons," New York, p. 428, 1992. [26] A. L. Linsebigler, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chemical Reviews, vol. 95, p. 735-758, 1995. [27] D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma, and P. Guo, "Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration," International Journal of Hydrogen Energy, vol. 35, pp. 7087-7097, 2010. [28] S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," J. Phys. Chem. B 107, vol. 81, pp. 1484-1486, 1977. [29] K. Rajehwar and N. R. d. Tacconi, Chemistry of materials, 13: ACS Publications, 2001. [30] V. Subramanaian and P. V. Kamat., "Physical Chemistry B," Physical Chemistry B, vol. 107, p. 7479, 2003. [31] A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium dioxide photocatalysis," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1-21, 2000. [32] J. K. Leland and A. J. Bard, "Photochemistry of colloidal semiconducting iron oxide polymorphs," Journal of Physical Chemistry, vol. 91, pp. 5076-5083, 1987. [33] 橋本和仁 and 藤嶋昭, 圖解光觸媒: 全華科技圖書股份有限公司, 2006. [34] B. K. Vainshtein, W. M. Fridkin, and V. L. Indenbom, Structure of Crystals: Berlin:Macmillan India Ltd, 1994. [35] R. C. Buchanan and T. Park, Materials crystal chemistry: CRC, 1997. [36] L. P. A. Sclafani, M. Schiavello, "Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion," J. Phys. Chem. B 107, vol. 94, pp. 829-832, 1990. [37] R. J. Wu, Y. D. Ju, and C. C. Jeng, "Promotion of Generation of Hydrogen by Splitting of Water by CNT Over Pt/TiO2 Catalysts," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 4213-4220, 2010. [38] 南區奈米科技K-12教育發展中心, 奈米科技─基礎、應用與實作: 高立圖書有限公司, 2005. [39] A. Kudo, H. Kato, and I. Tsuj, "Strategies for the development of visible-light-driven photocatalysts for water splitting," Chemistry Letters, vol. 33, pp. 1534-1539, 2004. [40] 鄭玫玲, "金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究," 碩士論文, 材料科學與工程所, 國立中央大學, 2007. [41] S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J. N. Kondo, K. Maruya, and K. Domen, "Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17," Microporous materials, vol. 9, pp. 253-258, 1997. [42] Shangguan.W and Yoshida.A, "Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide," International Journal of Hydrogen Energy, vol. 24, pp. 425-431, 1999. [43] U. Siemon, D. Bahnemann, J. J. Testa, D. Rodrı́guez, M. I. Litter, and N. Bruno, "Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 247-255, 2002. [44] T. Sreethawong and S. Yoshikawa, "Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts," Catalysis Communications, vol. 6, pp. 661-668, 2005. [45] 曾焜煜, "以紫外線/光觸媒程序處理氣相丙酮反應行為之研究," 碩士論文, 化學工程研究所, 國立台灣科技大學, 2003. [46] 馬志明, "紫外線/光觸媒程序處理氣相揮發性有機物反應行為之研究," 博士論文, 化學工程研究所, 國立臺灣科技大學, 2007. [47] 蕭德福, "以改質之TiO2光觸媒探討四率乙烯分解率及礦化率之影響," 碩士論文, 環境工程研究所, 國立中山大學, 2000. [48] 傅泀翰, "以改質光觸媒處理二氯甲烷之研究," 碩士論文, 環境工程研究所, 國立成功大學, 2004. [49] 陳禹鈞, "以Fe、V改質光觸媒觸理1,2-二氯乙烷之研究," 碩士論文, 環境工程研究所, 國立成功大學, 2005. [50] 劉仰哲, "以Sr、Cu改質TiO2光觸媒處理廚餘堆肥場中 臭味氣體三甲基胺之研究," 碩士論文, 環境工程研究所, 國立成功大學, 2006. [51] H.-J. Choi and M. Kang, "Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2," International Journal of Hydrogen Energy, vol. 32, pp. 3841-3848, 2007. [52] W.-C. Hung, Y.-C. Chen, H. Chu, and T.-K. Tseng, "Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane," Applied Surface Science, vol. 255, pp. 2205-2213, 2008. [53] A. Gallo, M. Marelli, R. Psaro, V. Gombac, T. Montini, P. Fornasiero, R. Pievo, and V. D. Santo, "Bimetallic Au-Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol," Green Chemistry, vol. 14, pp. 330-333, 2012. [54] 林嘉男, "溶膠凝膠法合成NiO/TiO2之 p-n接面光觸媒之研究," 碩士論文, 化學工程研究所, 國立臺灣科技大學, 2009. [55] 李俊賢, "負載銀二氧化鈦光觸媒分散及其光催化反應之研究," 碩士論文, 化學工程研究所, 國立清華大學, 2004. [56] 鄭千芳, "以溶膠凝膠法製備複合奈米Ag/TiO2光觸媒之研究," 碩士論文, 化學工程研究所, 國立雲林科技大學, 2005. [57] 巫菁芳, "奈米二氧化鈦覆載於銀擔體之複合物光觸媒對丙酮去除處理之研究," 碩士論文, 環境工程系所, 國立交通大學, 2007. [58] T. Sreethawong, T. Puangpetch, S. Chavadej, and S. Yoshikawa, "Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template," Journal of Power Sources, vol. 165, pp. 861-869, 2007. [59] 張立群譯, 光清淨革命-活躍的二氧化鈦光觸媒. 台北: 協志工業叢書印行, 2000. [60] Y. F. Zhu, L. Zhang, C. Gao, and L. L. Cao, J. Mater. Sci., vol. 35, p. 40-49, 2000. [61] 曹茂盛, 關長斌, and 徐甲強, 奈米材料導論: 學富文化事業有限公司, 2002. [62] 張佑甄, "溶膠-凝膠法/含浸法製備鈀觸媒於去除污染物CO及NO之研究," 碩士論文, 環境工程研究所, 國立中興大學, 2005. [63] J. Livage and C. Sanchez, "Sol-gel chemistry," Journal of Non-Crystalline Solids, vol. 145, pp. 11-19, 1992. [64] H. Yu, K. Zhang, and C. Rossi, "Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst," Journal of Photochemistry and Photobiology A: Chemistry, vol. 188, pp. 65-73, 2007. [65] S. B. Kim and S. C. Hong, "Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst," Applied Catalysis B: Environmental, vol. 35, pp. 305-315, 2002. [66] Y. Xu and C. H. Langford, "Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity," Journal of Photochemistry and Photobiology A: Chemistry, vol. 133, pp. 67-71, 2000. [67] 張力壬, "奈米光觸媒應用於水質淨化之研究," 碩士論文, 營建系, 國立台灣科技大學, 2006. [68] S. B. Kim, H. T. Hwang, and S. C. Hong, "Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst," Chemosphere, vol. 48, pp. 437-444, 2002. [69] A. Kudo, "Photocatalyst materials for water splitting," Catalysis Surveys from Asia, vol. 7, pp. 31-38, 2003. [70] A. Kudo, "Development of photocatalyst materials for water splitting," International Journal of Hydrogen Energy, vol. 31, pp. 197-202, 2006. [71] A. Galinska and J. Walendziewski, "Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents," Energy & fuels, vol. 19, pp. 1143-1147, 2005. [72] M. Helmann and K. Zuckerman, "Nitrite ion reduction to ammonia in illuminated aqueous suspensions of powdered semiconductors in alkaline sulfide solutions," Journal of Chemical Society, Chemical Communications, 1986. [73] F. Zhang, R. Jin, J. Chen, C. Shao, W. Gao, L. Li, and N. Guan, "High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters," Journal of Catalysis, vol. 232, pp. 424-431, 2005. [74] 高濂, 鄭珊, and 張靑紅, 奈米光觸媒: 五南圖書出版股份有限公司, 2004. [75] J. Munoz and X. Domenech, "TiO2 catalysed reduction of Cr (VI) in aqueous solutions under ultraviolet illumination," Journal of Applied Electrochemistry, vol. 20, pp. 518-521, 1990. [76] A. Davis and C. Huang, "Removal of phenols from water by a photocatalytic oxidation process," Water Science & Technology, vol. 21, pp. 455-464, 1989. [77] 吳致誠, "UV/TiO2程序中氫氧自由基之生成研究," 碩士論文, 環境工程研究所, 國立中興大學, 2006. [78] M. H. Habibi, A. Hassanzadeh, and S. Mahdavi, "The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions," Journal of Photochemistry and Photobiology A: Chemistry, vol. 172, pp. 89-96, 2005. [79] X. Fu, J. Long, X. Wang, D. Y. C. Leung, Z. Ding, L. Wu, Z. Zhang, Z. Li, and X. Fu, "Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution," International Journal of Hydrogen Energy, vol. 33, pp. 6484-6491, 2008. [80] M.-H. Du, J. Feng, and S. B. Zhang, "Photo-Oxidation of Polyhydroxyl Molecules on TiO2 Surfaces: From Hole Scavenging to Light-Induced Self-Assembly of TiO2-Cyclodextrin Wires," Physical Review Letters, vol. 98, p. 066102, 2007. [81] 經濟部工業局, 光電業資源化應用技術手冊: 經濟部工業局, 2003. [82] 黃志彬 and 白曛綾, "科學工業園區管理局專案委託計畫-科學園區事業廢氣、廢水處理設施功能提升輔導," 2003. [83] 中國國家標準CNS, "化學試藥(四乙酸乙二胺," vol. 總號:1718, ed, 1996, pp. 543-544. [84] J. Sorvari and M. Sillanpaa, "Influence of metal complex formation on heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna," Chemosphere, vol. 33, pp. 1119-1127, 1996. [85] 唐政宏, "探討二氧化鈦觸媒電極氫氧自由基產率及處理生活污水效率," 碩士論文, 環境工程與管理研究所, 朝陽科技大學, 2007. [86] F. G. Kari and W. Giger, "Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment," Water Research, vol. 30, pp. 122-134, 1996. [87] J. Rodriguez, A. Mutis, M. C. Yeber, J. Freer, J. Baeza, and H. Mansilla, "Chemical degradation of EDTA and DTPA in a totally chlorine free (TCF) effluent," Water science and technology, vol. 40, pp. 267-272, 1999. [88] J. K. Yang and A. P. Davis, "Competitive Adsorption of Cu (II)–EDTA and Cd (II)–EDTA onto TiO2," Journal of colloid and interface science, vol. 216, pp. 77-85, 1999. [89] J. K. Yang and A. P. Davis, "Photocatalytic oxidation of Cu (II)-EDTA with illuminated TiO2: kinetics," Environmental science & technology, vol. 34, pp. 3789-3795, 2000. [90] F. Holler, T. Nieman, and D. Skoog, "Principles of instrumental analysis," Saunders College Publishing, Philadelphia, 1998. [91] B. S. Huang, F. Y. Chang, and M. Y. Wey, "Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution," International Journal of Hydrogen Energy, vol. 35, pp. 7699-7705, 2010. [92] T. Sreethawong, C. Junbua, and S. Chavadej, "Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst," Journal of Power Sources, vol. 190, pp. 513-524, 2009. [93] 華只初, 錢越英, and 俞稼鏞, "一些光敏劑水溶液體系光生電勢與光催化產氫之關係," 感光科學與光化學, vol. 3, 1990. [94] A. Nada, M. Barakat, H. Hamed, N. Mohamed, and T. Veziroglu, "Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts," International Journal of Hydrogen Energy, vol. 30, pp. 687-691, 2005. [95] M. Qamar, M. Saquib, and M. Muneer, "Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions," Desalination, vol. 186, pp. 255-271, 2005. [96] Y. Cui, Q. Wang, Y. Dong, H. Li, and P. Christie, "Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA," Plant and Soil, vol. 261, pp. 181-188, 2004. [97] 李尚凡, 化學反應工程: 高立圖書有限公司, 2006. [98] A. Das, Y. Kim, H. Zhang, and P. K. Dutta, "Zeolite membrane-based artificial photosynthetic assembly for long-lived charge separation," The Journal of Physical Chemistry B, vol. 109, pp. 6929-6932, 2005.en_US
dc.identifier.urihttp://hdl.handle.net/11455/5807-
dc.description.abstract乙二胺四乙酸(EDTA)在清洗產業中為常用的配藥,而近幾年最熱門的觸控面板或是一般平板面板,在製程中均需要進行面板的清洗,洗淨劑的廢水流入污水廠,造成較高的處理成本;因此本研究採用光催化反應將廢水轉換為氫氣的能源並降解廢水;以犠牲劑的光催化產氫進行了探討,將面板製程中含EDTA的清洗廢水作為犠牲劑,並評估之反應條件的影響。 光催化產氫的過程中,產氫量受犧牲試劑與初始溶液的pH值所影響,而初始溶液的pH值,決定二氧化鈦的表面電荷和犧牲試劑的化學狀態。溶液的pH值,主要受犧牲試劑和二氧化鈦之間的電子供給能力。研究結果顯示,決定最佳的初始溶液pH值,可根據犧牲試劑的解離平衡常數和光觸媒zeta電位點。 以化學需氧量來進行含EDTA清洗劑污水之降解速率常數的測試,研究得知,為不可逆的單分子型一階反應,濃度與溶液初始pH值對於降解率與產氫量有很大的影響。以光催化反應處理含EDTA清洗劑廢水,並改變初始溶液的pH值,可提高產氫量和面板業廢水的降解率。不僅能分解污染物也能產生氫氣。zh_TW
dc.description.abstractAs liquid crystal display (LCD) products have been extensively applied, a large amount of cleaner for LCD manufacture was used and a great deal of waste water was produced. In the LCD manufacturer, the waste water mainly composed of EDTA (Ethylene Diamine Tetra Acetates) and water. However, the large amount of waste water treatment cost much money. Therefore, this study used photocatalytic reaction to decompose waste water and convert it to hydrogen (H2) energy. In this study, the effect of sacrificial reagents on the photocatalytic H2 production was investigated. In addition, the LCD manufacture waste water was used as sacrificial reagent, and the effect of reaction conditions on the photocatalytic H2 production and waste water decomposition was also evaluated. The results indicated the H2 production rate was strongly affected by sacrificial reagents and initial solution pH. The initial solution pH determined the surface charge of TiO2 and the chemical state of sacrificial reagents. Therefore, the pH of the solution mainly affected the electron-donating ability between sacrificial reagents and TiO2. In the case of this study, the optimal initial solution pH could be determined according to dissociation equilibrium constants of sacrificial reagents and zeta potential point of photocatalyst. For LCD manufacturer waste water decomposition, the decomposition rate constant was evaluated by the result of chemical oxygen demand. The result showed the decomposition of the prepared waste water fitted irreversible unimolecular-type first-order reaction. The decomposition rate and H2 production rate was strongly affected by EDTA concentration and initial solution pH. The H2 production rate and the decomposition rate of waste water from LCD manufacture could be much enhanced by modification of initial solution pH. The study showed the treatment of LCD manufacture waste water by photocatalytic reaction could not only decompose pollutant but also produce H2.en_US
dc.description.tableofcontents目 錄 摘 要 II ABSTRACT III 圖目錄 VIII 表目錄 X 第一章 序論 1 1-1 研究緣起 1 1-2研究目的 3 1-3研究流程 4 第二章 文獻回顧 5 2-1 能源與環境 5 2-1-1 能源概況 5 2-1-2 能源對於環境的影響 10 2-1-3 再生能源 12 2-2 氫能發展 17 2-2-1 氫能 17 2-2-2 氫能之應用 19 2-2-3 氫能生產現況 20 2-3 光觸媒簡介 24 2-3-1 半導體材料簡介 25 2-3-2 光觸媒材料選擇 27 2-3-3 二氧化鈦的物理性質 30 2-3-4 光觸媒反應基礎原理 33 2-4 金屬改質 37 2-5 製備方法 41 2-5-1 含浸法 41 2-5-2 溶膠凝膠法 41 2-5-3 化學氣相沉積法 43 2-6 光催化影響參數 44 2-6-1 光強度 44 2-6-2 溫度 45 2-6-3 犠牲劑 46 2-6-4 pH值 49 2-7 洗淨製程之清洗廢水 52 2-7-1 面板業製程中之廢水 52 2-7-2 EDTA之化學特性 56 2-7-3 EDTA廢水處理與降解 59 2-7-4 EDTA的應用 61 第三章 實驗設備與方法 62 3-1 實驗架構 62 3-2 實驗材料及設備 63 3-2-1實驗藥品及器材 63 3-3-2 氣體鋼瓶 63 3-3-3 實驗儀器及設備 64 3-3 活性測試分析 65 3-3-1 光催化反應系統 65 3-3-2 氣相層析 69 3-3-3 化學需氧量分析 70 3-4 觸媒製備 72 3-5 觸媒特性分析 73 3-5-1 比表面積分析儀(BET) 73 3-5-2 X光粉末繞射儀(XRD) 74 3-6 實廠廢水樣本採樣 74 第四章 結果與討論 75 4-1 PT/TIO2 之物理特性 75 4-2犧牲劑種類對產氫之影響 77 4-2-1 H+解離的犠牲劑種類對產氫的影響 77 4-2-2 OH-解離的犠牲劑種類對產氫的影響 79 4-2-3 不易解離的犠牲劑種類對產氫的影響 81 4-3 模擬面板廠廢水之操作條件對產氫與降解效率探討 83 4-3-1 操作條件之光催化產氫效率 83 4-3-2 操作條件之廢水降解速率 87 4-4實廠廢水之光催化產氫與降解 90 第五章 結論與建議 91 5-1 結論 91 5-2 建議 91 參考文獻 92zh_TW
dc.language.isozh_TWen_US
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201214535800en_US
dc.subject降解zh_TW
dc.subjectsacrificial reagentsen_US
dc.subject犠牲劑zh_TW
dc.subjectEDTAzh_TW
dc.subject面板業zh_TW
dc.subjectEDTAen_US
dc.subjectLCD manufactureen_US
dc.title以乙二胺四乙酸廢水作為光催化產氫犠牲劑之研究zh_TW
dc.titlePhotocatalytic hydrogen production from wastewater of ethylene diamine tetraacetic acid using Pt/TiO2 photocatalysten_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.