Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5813
標題: 以植物油乳化液進行地下水中三氯乙烯污染整治之模場試驗
Pilot study of trichloroethene-contaminated aquifer using vegetable oil emulsion.
作者: 宋景樺
Sung, Jing-Hua
關鍵字: 三氯乙烯;boidegradation;乳化液;生物復育;現地模場試驗;pilot study;trichloroethene;soybean oil emulsion
出版社: 環境工程學系所
引用: 1.盧至人. (1997). 地下水的污染整治. 台灣: 國立編譯館. 2.林財富. (2002). 土壤與地下水物理化學與熱處理整治技術之發展現況. 環保月刊, 9, 87-99. 3.經濟部水利署. (2011). 經濟部水利署公務統計報表.Retrieved 10.19, 2011, from http://www.wra.gov.tw/ct.asp?xItem=21520&ctNode=5292&comefrom=lp#5292 4.李冠勳. (2010). 三氯乙烯污染場址之微生物整治與監測 國立中山大學, 高雄. 5.王子欣. (2006). 常溫下過硫酸鹽氧化三氯乙烯之研究. 國立中興大學, 台中. 6.行政院環境保護署. (2001). 土壤及地下水污染整治法之地下水軟管制標準. 7.張有義, 郭蘭生. (1997). 膠體及界面化學入門. 台北市,台灣: 高立圖書有限公司. 8.林靜齡. (2010). 乳化奈米零價鐵於地下水之傳輸性評估. 國立中興大學, 台中. 9.徐伯安. (2006). 變性梯度電泳(DGGE)技術在環境微生物多樣性與污染整治上的研究與應用. 國立中山大學, 高雄. 10.張永宜. (2007). 奈米零價鐵處理水中之三氯乙烯. 國立中山大學, 高雄. 11.曹桓光;連大偉. (2001). 淺談乳化液. 物理雙月刊, 23, 448-493. 12.梁振儒. (2007). 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保會協會簡訊, Vol.23, 13-20. 13.郭育仁. (2001). 厭氧生物處粒四氯乙烯代謝方式之探討. 國立中興大學, 台中 14.郭雅鈴. (2006). 應用監測式自然衰減法整治受石油碳氫化合物污染地下水. 國立中山大學, 高雄. 15.陳谷汎. (2002). 土壤及地下水物理/化學復育技術. 台灣土壤及地下水環境保護協會簡訊, Vol.5, 3-5. 16.陳姿文. (2011). 奈米乳化液於地下水層中傳輸之研究. 國立中興大學, 台中. 17.陳福勝、陳卓然、林士誠. (2001). 土壤及地下水污染處理總論(譯). 中華技術雜誌, 49. 18.楊書豪. (2011). 乳化液包覆過氧化物奈米顆粒進行地下水中三氯乙烯移除研究. 國立中興大學, 台中. 19.楊毓齡. (2008). 分子生物技術於環境領域之應用. 行政院環境保護署科技顧問. 20.經濟部工業局. (2006). 重金屬-土壤及地下水污染預防及整治技術手冊: 經濟部 21.廖聖茹, 廖世傑,洪松慰,林俐秀,徐文泰. (2001). 模板製備奈米結構技術. 奈米技術專刊, 9, 87-97. 22.劉詔文. (2004). 生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究. 國立中央大學, 桃園. 23.劉嘉庭, 郭育嘉, 邱漢瑜, 何曉蓉, and 高志明. (2011). 利用乳化型釋碳基質提昇三氯乙烯污染地下水之生物降解效. 中華民國環境工程學會(土壤與地下水研討會). 24.歐靜枝. (1992). 乳化溶液技術實務: 復漢出版社印行. 25.環保署. (1998). 多環芳香化合物排放影響地下水污染管制相關法規研訂. 26.謝昶毅. (2003). 以PCR-DGGE技術分析石油碳氫化合物污染地下水中之微生物菌相. 國立中山大學, 高雄. 27.簡華逸. (2009). 以現地生物整治技術復育三氯乙烯污染之地下水-模場試驗. 土壤污染之調查、整治及復育研討會(土壤污染之綠色整治及物化整治), 282-295. 28.蘇政峰. (2010). DNA電化學生物感測器製成探討及其於PCR分析之應用. 私立東海大學, 台中. 29.Auelnta, F., Pera, A., Rossetti, S., Petrangeli, P. M., and Majone, M. (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors Water Res, 41, 27-38. 30.Bouwer, E. J., and McCarty, P. L. (1984). Modeling of trace organics biotransformation in the subsurface. Ground Water, 22, no. 4, 433-440. 31.Bedient,P. B., Rifai, H. S. and Newall, C. J.. (1999). Ground Water Contamination : Transport and Remediation Prentice Hall PTR. 32.Buscheck, T.E. and Alcantar, C.M.. (1995). Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In Intrinsic Bioremediation, ed. R.E. Hinchee, J.T. Wilson and D.C. Downey, 109-116. Columbus, Ohio: Battelle Press. 33.Brown, R. A., Hinchee, R., Norris, R. D., and Wilson, J. (1996). Bioremediation of petroleum hydrocarbons: A Flexible Variable Speed Technology. (EPA/600/A-95/140). EPA. 34.Bhatt, P., Kumar, M. S., Mudliar, S., and Chakrabarti, T. (2007). Biodegradation of chlorinated compounds—a review Taylor and Francis (Vol. 37, pp. 1655-1198). Nehrumarg, Nagpur, India: National Environmental Engineering Research Institute. 35.Borden, R., Beckwith, C., Lieberman, W. J. M., Akladiss, T., and NajiHill, S. R. (2007). Enhanced anaerobic bioremediation of a TCE source at the Tarheel Army Missile Plant using EOS. Remediation Journal, 17(3), 5-19. 36.Chakravorty, S., Helb, D., Burday, M., Connell, N., and Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods, 69(2), 330-339. 37.Choi, B. K., Wyss, C., and Gobel, U. B. (1996). Phylogenetic analysis of pathogen-related oral spirochetes. J Clin Microbiol J Clin Microbiol, 34(8), 1922-1925. 38.Clark, D.W. and Briar, D.W.. (2001). What is Ground Water? , (93-643). U.S. Geological Survey, U.S. Department of the Interior. 39.Christ, J. A., Ramsburg, C. A., Abriola, L. M., Pennell, K. D., and Löffler, F. E. (2005). Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environmental Health Perspectives, 113(4), 465-477. 40.Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. J.Clin. Microbiol., 17, 840-462. 41.Coulibaly, K. M., and Borden, R. C. (2004). Impact of edible oil injection on the permeability of aquifer sands. J Contam Hydrol, 71(1-4), 219-237. 42.Chakravorty, S. , Helb, D. , Burday, M. , Connell, N. and Alland, D.. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods, 69(2), 330-339. 43.Diane, S. and Roote, P.G.. (1997). In Situ Flushing. (97-02). Technology Overview Report: Ground-Water Remediation Technologies Analysis Center. 44.Fischer, S. G., and Lerman, L. S. (1979). Lengh-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell. 16, 191-200. 45.Federle, T. W. , Ventullo, R. M. andWhite, D. C. . (1990). Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface. Microbial Ecology, 20, 297-313. 46.Fathepure, B. Z., and Vogel, T. M. (1991). Complete degradation of polychlorinated hydrocarbonsby a two-stage biofilm reactor. Environ. Microbiol, Vol.57, 3478-3422. 47.Griffin, W. C. (1949). Classification of surface-active agents by HLB. Journal of the Society of Cosmetic Chemists, 1, 311. 48.Hopkins, G. D. , Semprini, L. and McCarty, P. L.. (1993). Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing organisms. Environmental Microbiology, 59, 2277-2285 49.Holmberg, K., and Jönsson, B. (2003). Surfactants and polymers in aqueous solution Wiley ( Second ed.). Chichester, UK: John Wiley and Sons Ltd. 50.Harkness, M., Fisher, A., Lee, M. D., Mack, E. E., Payne, J. A., Dworatzek, S., Possolo, A. (2012). Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies. J Contam Hydrol, 131(1-4), 100-118. 51.Interational Agency for Research on Cancer. (2013). Agents Classified by the IARC Monographs, 1–108. from http://monographs.iarc.fr/ENG/Classification/ 52.Kueper, B. H., Wealthall, G. P., Smith, J. W. N., Leharne, S. A., and Lerner, D. N. (2003). An Illustrated Handbook of DNAPL Transport andFate in the Subsurface. Bristol, UK: Environment Agency 53.Kunieda, H., and Shinoda, K. (1980). Solution behavior and hydrophile-lipophile balance temperature in the aerosol OT-isooctane-brine system: Correlation between microemulsions and ultralow interfacial tensions Elsevier. Journal of Colloid and Interface Science, 75(2), 601-606. 54.Little , C. D. , Palumbo, A. V. ,Herbes, S. E. , Lidstrom, M. E. ,Tyndall, and Gilmer, P. J. . (1988). Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium. Environ. Microbiol, 54(4), 951. 55.LaGrega, M.D., Buckingham, P. L.and Evans, J. C.. (1994). Hazardous waste management New York:McGraw-Hill: Waveland Pr Inc 56.Lo¨ffler, F. E., and Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol, 17, 274-284. 57.Lee, I1-S., Bae, J-H., and McCarty, P. L. (2007). Comparison between acetate and hydrogen as electron donors and implications for the reductive ehalogenation of PCE and TCE Elsevier. J Contam Hydrol, 94(1-2), 76-85. 58.McBain,J. W.. (1913). Mobility of highly-charged micelles. Trans. Faraday Soc., 9, 99. 59.McCarty, P. L., and Semprini, L. (1994). Ground-water treatment for chlorinated solvents. . Florida: Lewis Publishers. 60.Morrison, R. D..(2000). Application of Forensic Techniques for Age Dating and Source Identification in Environmental Litigation. Journal of Environmental Forensics, 1, 131-153. 61.Maidak, B. J., Lilburn, C. T., Parker, C. J., Sazman, P., Farris, R., Garrity, G., . . . Tiedje, J. (2001). The RPD II (Ribosomal DatabaseProject). Nucleic Acids Research, 29(1), 173-174. 62.Munson, M. A., Banerjee, A., Watson, T. F., and Wade, W. G. (2004). Molecular analysis of the microflora associated with dental caries. J. Clin. Microbiol. , 42(7), 3023-3029. 63.Newman, W. A., and Pelle, R. C. (2006). Enhanced anaerobic bioremediation of chlorinated solvents utilizing vegetable oil emulsions. Remediation Journal, 16(3), 109-122. 64.Olaniran, A. O., Pillay, D., and Pillay, B. (2008). Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa. Chemosphere, 73(1), 24-29. 65.Orafidiya, L. O., and Oladimeji, F. A. (2002). Determination of the required HLB values of some essential oils Elsevier. International Journal of Pharmaceutics, 237, 241-249. 66.Petti, C. A., Polage, C. R., and Schreckenberger, P. (2005). The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional ethods. J Clin Microbiol, 43(12), 6123-6125. 67.Pant, P., Pant, S.. (2010). A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22(1), 116-126. 68.Ralinda, R. and Miller, P. G.. (1996) Air sparging. Pittsburgh,U.S.: Groundwater Remediation Technologies Analysis Center. 69.Shinoda, K., and Kunieda, H. (1983). Phase properties of emulsion: PIT HBL. Marcel Dekker,New York: Encyclopedia of Emulsion Technology New York. 70.Suarez, M. P., and Rifai, H. S. (1999). Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater. 71.Sorenson, J. e. a. (2006). Electron donors for chlorinated solvent source area bioremediation. 72.Suthersan, S. S. (1999). Remediation engineering : design concepts. Roca Raton,New York: CRC Press. 73.Taylor, P. (1995). Ostwald ripening in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99(2-3), 175-185. 74.Tiehm, A., and Schmidt, K. R. (2011). Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application. Curr Opin Biotechnol, 22(3), 415-421. 75.Unkonw. (2003). Remediation of Vinyl Chloride. from http://www.regenesis.com/ORCtech/Tb2223.htm 76.USEPA. (1994). How to evaluate alternative cleanup technologies for underground storage tank sites. EPA. 77.USEPA. (1994). How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. EPA. 78.USEPA. (1995). Treatment walls. U. S. EPA Office of Solid Waste and Emergency Response Technology. 79.USEPA. (2002). Field Applications of In Situ Remediation Technologies : Permeable Reactive Barriers. UAS: Office of Solid Waste and Emergency Response. 80.Van de Peer, Y., Chapelle, S., and Wachter, R. D. (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Research, 24(17), 3381-3391. 81.Vogel, T. M., Criddle, C. S., and McCarty, P. L. (1987). ES Critical Reviews: Transformations of halogenated aliphatic compounds. Environ Sci Technol, 21, 722-736. 82.Vogel, T. M., Criddle, C. S., MaCarty, P.L. (1987). Transformation of halogenated aliphatic compounds. Environmental Science Technology, 21(8), 722-736. 83.Wagoner, J. K. (1983). Toxicity of Vinyl Chloride and PoIy(vinyl Chloride): A Critical Review. Environmental Health Perspectives, 52, 61-66. 84.Wiedemeier, T. H., Swanson, M. A., Wilson, J. T., Kampbell, D. H., Miller, R. N. and Hansen, J. E.. (1996). Approximation of Biodegradation Rate Constants for Monoaromatic Hydrocarbons (BTEX) in Ground Water. U.S. Environmental Protection Agency Papers, 189-194 85.Van de Peer, Y., Chapelle, S. and Wachter, R. D.. (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Research, 24(17), 3381-3391. 86.Yin Y. and Allen H. E.. (1999). In Situ Chemical Treatment. Ground-Water Remediation Technologies Analysis Center. 87.Zhang, Y. K., and Heathcote, R. C.. (2003). An Improved Method for Estimation of Biodegradation Rate with Field Data. Ground Water Monitoring and Remediation, 23(3), 112-116.
摘要: 
氯化有機溶劑是地下水中常見的污染物,如四氯乙烯(perchloroethene, PCE)、三氯乙烯(trichloroethene, TCE)、1,1,1-三氯乙烷(1,1,1-trichloroethane, 1,1,1-TCA)與四氯甲烷(carbon tetrachloride, CT)等,由於氯化有機溶劑之特殊物理化學性質,因此常廣泛被應用於工業上,而人為的不當傾倒或是意外洩漏使得氯化有機溶劑造成污染。氯化有機溶劑污染現址之生物處理方法一般可分為好氧處理及厭氧處理,而高氯數之氯化有機溶劑於厭氧情況下可快速的進行還原脫氯反應,但常會產生毒性較高之中間產物,且有累積的情況,而於好氧環境下低氯數的中間產物可以快速的進行礦化的。本研究著重於第一階段之厭氧還原脫氯反應,以自行研發之食品級大豆油乳化液進行生物復育模場試驗,在厭氧狀況下進行還原脫氯,觀察三氯乙烯是否降解成氯乙烯或乙烯。本研究共進行兩次現地試驗,由兩次實驗結果比較得知,從第一次試驗發現監測井MW-1受注入井IW-1之影響不高,所以改變灌注方式可提高乳化液的影響半徑。本研究除了VOCs、IC與TOC分析外,也進行總菌數與菌相分析了解現地之菌數與菌種變化。研究發現注入井IW-1與IW-2之TCE濃度於注入乳化液後第21天即小於偵測極限,而IW-2之1,1-DCE初始濃度為127.2 μg/L於第95天降低至27.3 μg/L。研究結果顯示大豆油乳化液確實能有效提升TCE與DCE之降解。本研究所使用之乳化液以添加大量清水(甜甜圈法)之試驗比單獨注入乳化液的結果為佳,其影響半徑約5 m。大豆油乳化液在最佳的狀態下可持續釋氫達一年以上(大約400天),在最差的狀況下最少可維持3個月。

The family of chlorinatd ethenes has been widely used as a solvent and building block in industrial and pharmaceutical manufacturing. Some of the most common chlorinated alipathic hydrocarbons (CAHs) found in groundwater include perchloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), carbon tetrachloride (CT). Enhanced reductive bioremediation (ERB) of halogenated organics has been appliedto reduce CAHs in groundwater. ERB involves the addition of carbon substrates to the subsurface to stimulate anaerobic bacteria capable of reductively dechlorinating CAHs. In this processes, CAHs play the roles as electron accepters, while an electron donor is required to provide energy. Researchers are developing all different kinds of electron doners. Vegetable oil emulsion is one of them that can slowly release hydrogen in the subsurface to enhanced reductive bioremediation. Our study focuses on the first phase of anaerobic reductive dechlorination reactions applying a self-developed soybean oil emulsion for a pilot study. We conducted two experiments on the site. From the first experiment, we know that monitoring wells MW-1 was not affected by injection well IW-1. So we changed the injection methods to improve the radius of influence of the emulsion. In addition to chemical analysis such as CAHs, daughter compounds, inorganic compounds, and total organic carbon, total count of bacteria and denaturing gradient gel electrophoresis were alos performed. We found that in injection wells IW-1 and IW-2, 21 days after the injection, TCE concentrations were already less than detection limit. In IW-2, 1,1-DCE dropped from 127.2 μg/L to 27.3 μg/L 95 days after injection. Thus we confirmed that this soybean oil emulsion can effectively enhanc 1,1-DCE and TCE biodegradation in a real world situation.
URI: http://hdl.handle.net/11455/5813
其他識別: U0005-1208201311590200
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.