Please use this identifier to cite or link to this item:
標題: 以釩改質二氧化鈦電觸媒降解染料AR27之研究
Study on degradation of dye Acid Red 27 by using V-modified TiO2 electrocatalyzer
作者: 鄭惟文
Zheng, Wei-Wen
關鍵字: 電化學系統;Electrochemical system;AR 27;釩參雜;二氧化鈦;Acid Red 27;Vanadium-doped;Titanium dioxide
出版社: 環境工程學系所
引用: 1.中文部分 (1)圖書 經濟部工業局,1993,染整工業「工業減廢技術手冊」。 經濟部工業局,1994,染整工業「染整業水污染防治技術手冊」。 石濤,2007,環境化學,鼎茂圖書出版股份有限公司。 葉君棣 / 陳志堅譯,1984,X射線光電子分光儀應用手冊,國興出版社。 (2)期刊論文 洪雲傑(2006),以活性碳擔持二氧化鈦光觸媒之製備方法及特性 研究,碩士論文,國立中興大學環境工程學系。 汪昀昇(2008),利用過渡金屬V改質TiO2/ITO光觸媒電極特性及 光活性之研究,碩士論文,國立中興大學環境工程學系。 王瀞儀(2012),以N-TiO2固定態光觸媒利用太陽光礦化雙酚A之 研究,碩士論文,國立中興大學環境工程學系。 羅卓卿(2008),應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研 究,博士論文,國立中山大學環境工程研究所。 (3)網路資源 朱佳仁,物質之反應(Reaction),國立中央大學土木工程學系, (4)其他 Calise,Textile Chemicals & Auxilierces。 Nardell,〝Water Treatment〞Reinhold,New York (1946)。 編輯委員會編,〝用水廢水便覽〞,丸善 (1964)。 Am.Water Works Association,〝Water Quality Treatment〞,2nd Ed. (1950)。 日本染色協會。 日本毛整理協會理想水質。 2.西文部分 (1)Journal Articles Alaton, I. A., Balcioglu, I. A., and Bahnemann, D. W. (2002). "Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes." Water Research, 36(5), 1143-1154. Amin, S. A., Pazouki, M., and Hosseinnia, A. (2009). "Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli." Powder Technology, 196(3), 241-245. Behnajady, M. A., Modirshahla, N., Daneshvar, N., and Rabbani, M. (2007). "Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates." Chemical Engineering Journal, 127(1-3), 167-176. Chang, J.-H., Yang, T.-J., and Tung, C.-H. (2009). "Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater." Journal of Hazardous Materials, 163(1), 152-157. Chatzisymeon, E., Xekoukoulotakis, N. P., Coz, A., Kalogerakis, N., and Mantzavinos, D. (2006). "Electrochemical treatment of textile dyes and dyehouse effluents." Journal of Hazardous Materials, 137(2), 998-1007. Daneshvar, N., Rabbani, M., Modirshahla, N., and Behnajady, M. A. (2004a). "Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27)." Chemosphere, 56(10), 895-900. Daneshvar, N., Rabbani, M., Modirshahla, N., and Behnajady, M. A. (2004b). "Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process." Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 39-45. Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., and Giamello, E. (2007). "N-doped TiO2: Theory and experiment." Chemical Physics, 339(1-3), 44-56. Diebold, U. (2003). "The surface science of titanium dioxide." Surface Science Reports, 48(5–8), 53-229. Duan, X., Ma, F., Yuan, Z., Chang, L., and Jin, X. (2013). "Electrochemical degradation of phenol in aqueous solution using PbO2 anode." Journal of the Taiwan Institute of Chemical Engineers, 44(1), 95-102. Fahmi, A., Minot, C., Silvi, B., and Causa, M. (1993). "Theoretical analysis of the structures of titanium dioxide crystals." Physical Review B, 47(18), 11717-11724. Fan, L., Zhou, Y., Yang, W., Chen, G., and Yang, F. (2008). "Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model." Dyes and Pigments, 76(2), 440-446. Faouzi Elahmadi, M., Bensalah, N., and Gadri, A. (2009). "Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes." Journal of Hazardous Materials, 168(2-3), 1163-1169. Fox, M. A., and Dulay, M. T. (1993). "Heterogeneous photocatalysis." Chemical Reviews, 93(1), 341-357. Goldstein, S., Squadrito, G. L., Pryor, W. A., and Czapski, G. (1996). "Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical." Free Radical Biology and Medicine, 21(7), 965-974. Guettai, N., and Ait Amar, H. (2005). "Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study." Desalination, 185(1-3), 427-437. Jang, J., Kim, H., Reddy, V., Bae, S., Ji, S., and Lee, J. (2005). "Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O layered compounds." Journal of Catalysis, 231(1), 213-222. Kariyajjanavar, P., Jogttappa, N., and Nayaka, Y. A. (2011). "Studies on degradation of reactive textile dyes solution by electrochemical method." Journal of Hazardous Materials, 190(1-3), 952-961. Konstantinou, I. K., and Albanis, T. A. (2004). "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations." Applied Catalysis B: Environmental, 49(1), 1-14. Lopez-Lopez, A., Pic, J. S., and Debellefontaine, H. (2007). "Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions." Chemosphere, 66(11), 2120-2126. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.-M. (2002). "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania." Applied Catalysis B: Environmental, 39(1), 75-90. Li, W., Wang, H., Shi, Y., and Cai, N. (2013). "Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells." International Journal of Hydrogen Energy. Linsebigler, A., Lu, G., and Yates, J. (1995). "Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results." Chem. Rev., 95, 735-758. Long, R., Dai, Y., and Huang, B. (2009). "Structural and electronic properties of iodine-doped anatase and rutile TiO2." Computational Materials Science, 45(2), 223-228. Mayer, J. T., Diebold, U., Madey, T. E., and Garfunkel, E. (1995). "Titanium and reduced titania overlayers on titanium dioxide(110)." Journal of Electron Spectroscopy and Related Phenomena, 73(1), 1-11. Meng, X., Liu, G., Zhou, J., Shiang Fu, Q., and Wang, G. (2012). "Azo dye decolorization by Shewanella aquimarina under saline conditions." Bioresource Technology, 114, 95-101. Oturan, M. A. (2000). "An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D." Journal of Applied Electrochemistry, 30(4), 475-482. Parsa, J. B., Rezaei, M., and Soleymani, A. R. (2009). "Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics." Journal of Hazardous Materials, 168(2-3), 997-1003. Rocha, J. H. B., Solano, A. M. S., Fernandes, N. S., Silva, D. R., Peralta-Hernandez, J. M., and Martinez-Huitle, C. A. (2011). "Electrochemical Degradation of Remazol Red BR and Novacron Blue C-D Dyes Using Diamond Electrode." Electrocatalysis, 3(1), 1-12. Sokmen, M., Allen, D., Akkaş, F., Kartal, N., and Acar, F. (2001). "Photo-Degradation of Some Dyes using Ag-Loaded Titaniumdioxide." Water, Air, and Soil Pollution, 132(1-2), 153-163. Sanjines, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G., and Levy, F. (1994). "Electronic structure of anatase TiO2 oxide." Journal of Applied Physics, 75(6), 2945. Siddique, M., Farooq, R., Khan, Z. M., Khan, Z., and Shaukat, S. F. (2011). "Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor." Ultrasonics Sonochemistry, 18(1), 190-196. Silva, A. C., Pic, J. S., Sant’Anna, G. L., and Dezotti, M. (2009). "Ozonation of azo dyes (Orange II and Acid Red 27) in saline media." Journal of Hazardous Materials, 169(1-3), 965-971. Song, S., Fan, J., He, Z., Zhan, L., Liu, Z., Chen, J., and Xu, X. (2010). "Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes." Electrochimica Acta, 55(11), 3606-3613. Stylidi, M. (2003). "Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions." Applied Catalysis B: Environmental, 40(4), 271-286. Taneja, P., Vasa, P., and Ayyub, P. (2002). "Chemical passivation of sputter-deposited nanocrystalline CdS thin films." Materials Letters, 54(5–6), 343-347. Tang, H., Prasad, K., Sanjines, R., and Levy, F. (1995). "TiO2 anatase thin films as gas sensors." Sensors and Actuators B: Chemical, 26(1–3), 71-75. Tang, W. Z., Zhang, Z., An, H., Quintana, M. O., and Torres, D. F. (1997). "TiO2/UV Photodegradation of Azo Dyes in Aqueous Solutions." Environmental Technology, 18(1), 1-12. Wold, A. (1993). "Photocatalytic properties of titanium dioxide (TiO2)." Chemistry of Materials, 5(3), 280-283. Xue, Q., Li, M., Shimizu, K., Utsumi, M., Zhang, Z., Feng, C., Gao, Y., and Sugiura, N. (2011). "Electrochemical degradation of geosmin using electrode of Ti/IrO2–Pt." Desalination, 265(1-3), 135-139. Yi, F., Chen, S., and Yuan, C. e. (2008). "Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater." Journal of Hazardous Materials, 157(1), 79-87. Zhang, H., Zhou, W., Du, Y., Yang, P., Wang, C., and Xu, J. (2010). "Enhanced electrocatalytic performance for methanol oxidation on Pt–TiO2/ITO electrode under UV illumination." International Journal of Hydrogen Energy, 35(24), 13290-13297. Zhang, R., Zhang, C., Cheng, X., Wang, L., Wu, Y., and Guan, Z. (2007). "Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor." Journal of Hazardous Materials, 142(1-2), 105-110. Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S. (2007). "Enhancement of photocatalytic activity of P25 TiO2 by vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, 311(2), 497-501. Zhou, M., Sarkka, H., and Sillanpaa, M. (2011). "A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes." Separation and Purification Technology, 78(3), 290-297.
本研究嘗試以釩改質二氧化鈦披覆於鈦板,藉由金屬物改質改善二氧化鈦極板於電化學系統電壓過高、觸媒脫落等情形。陽極板V-TiO2/Ti(簡稱VT)使用溶膠凝膠法搭配含浸法製成,透過添加不同比例之釩前驅物製成0.05、0.1以及0.3 釩鈦莫耳比之陽極板,並分別以場發射掃描式電子顯微鏡(FE-SEM)、高解析X光繞射儀(HR-XRD)、化學分析電子能譜儀(ESCA)以及紫外光/可見光分析儀(UV/VIS),觀察不同觸媒極板表面特性之變化,並藉由電催化降解目標污染物AR 27。實驗控制四種操作參數,分別為不同觸媒改質比例、電流密度、電解液濃度以及初始pH,藉由批次實驗找出最佳操作參數,以利於後續之研究。
由表面特性分析的結果可知,0.1 VT下之觸媒極板顆粒堆疊方式較為整齊且均勻,披覆於極板上之觸媒經過分析確實含有釩參雜,其比例和添加比例有相符合之趨勢。晶相方面以銳鈦礦為主,有較佳之觸媒活性,而極板上之元素主要以Ti4+、O2-、V5+為主。
批次實驗結果顯示,於不同觸媒改質比例下,0.1 VT之觸媒極板能夠有效改善電壓過高之情形,同時具有最佳之TOC降解;電流密度中,以25 mA/cm2有較佳之降解情形。電解液濃度可分為0.01125、0.0225、0.045以及0.09 M,其中以0.045 M有較佳之染料去除優勢。對於控制不同初始pH條件下,其降解成效並無顯著差別,故以染料原始狀態pH = 6下,不額外調整pH值。於系統最佳操作參數0.1 VT觸媒、電流密度25 mA/cm2、電解液濃度0.045 M以及不調整pH條件下,色度於100分鐘內可完全脫色,TOC於3小時內能達到93 %的去除。綜合以上結果,利用電化學系統以釩改質二氧化鈦為陽極板處理染料AR 27是相當可行的。

This study investigated the electrochemical degradation of Acid Red 27(AR 27) in aqueous solution on a V-TiO2/Ti (VT) electrode. The influence of operating variables on the mineralization efficiency and decolorization rate were studied as a function of the molar proportion of vanadium-doped, current density, electrolyte concentration and the initial pH. FE-SEM images showed that the maximum uniformity particles and the best neat arrangement in 0.1 VT electrode. EDS and ESCA images showed that the implanted V ions existed in the lattice of TiO2.
In different molar proportion of vanadium-doped, 0.1 VT electrode improved high voltage situation and had most efficiency of TOC degradation. In general, treatment performance improved with increasing current density, but 25 mA/cm2 had most efficiency of TOC and color degradation. In electrochemical system, the electrolyte acted as an electron transport of vector. Because electrolyte concentration had more low energy comsumption in 0.045 M, the study selected it in the system. Because pHzpc effected surface charge of TiO2, degradation had no change in the different initial pH`s. Based on the above results, the TOC removal efficiency of dye solution was about 93% after 3 hours of electrolysis. According to the experimental results obtained, the electrochemical system is suitable for degradation AR 27, due to the electrocatalytic properties of V-TiO2/Ti anode.
其他識別: U0005-2406201310265000
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100063007-1.pdf5.24 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.