Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5834
標題: 台中市都市廢棄物處理操作成本與空氣污染排放權衡之研究
A Study of Trade-off between Operation Cost and Air Pollution Emissions for Municipal Solid Waste Treatment in Taichung City
作者: 張耀仁
Chang, Yao-Jen
關鍵字: 都市廢棄物管理;Municipal Solid Waste Management;數學規劃;台中市;空氣污染;參數不確定性;Mathematical Programming;Taichung City;Air Pollution;Parametric Uncertainty
出版社: 環境工程學系所
引用: Abou Najm, M., & El-Fadel, M. (2004). Computer-based interface for an integrated solid waste management optimization model. Environmental Modelling and Software, 19(12), 1151-1164. Arena, U., Mastellone, M. L., & Perugini, F. (2003). The environmental performance of alternative solid waste management options: A life cycle assessment study. Chemical Engineering Journal, 96(1-3), 207-222. Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for traditional markets in indonesia. Waste Management, 26(10), 1180-1191. Badran, M. F., & El-Haggar, S. M. (2006). Optimization of municipal solid waste management in port said - egypt. Waste Management, 26(5), 534-545. Barton, J. R., Dalley, D., & Patel, V. S. (1996). Life cycle assessment for waste management. Waste Management, 16(1-3), 35-50. Bjorklund, A., Dalemo, M., & Sonesson, U. (1999). Evaluating a municipal waste management plan using ORWARE. Journal of Cleaner Production, 7(4), 271-280. Bovea, M. D., Powell, J. C., Gallardo, A., & Capuz-Rizo, S. (2007). The role played by environmental factors in the integration of a transfer station in a municipal solid waste management system. Waste Management, 27(4), 545-553. Cao, M. F., Huang, G. H., Sun, Y., Xu, Y., & Yao, Y. (2010). Dual inexact fuzzy chance-constrained programming for planning waste management systems. Stochastic Environmental Research and Risk Assessment, 24(8), 1163-1174. Chang, N. B., & Wang, S. F. (1996). Solid waste management system analysis by multiobjective mixed integer programming model. Journal of Environmental Management, 48, 17-43. Chang, N. B., Shoemaker, C. A., & Schuler, R. E. (1996a). Solid waste management system analysis with air pollution and leachate impact limitations. Waste Management & Research, 14(5), 463-481. Chang, N. B., Yang, Y. C., & Wang, S. F. (1996b). Solid-waste management system analysis with noise control and traffic congestion limitations. Journal of Environmental Engineering, 122(2), 122-131. Chang, N.B., & Lin, Y. T. (1997). Economic evaluation of a regionalization program for solid waste management in a metropolitan region. Journal of Environmental Management, 3(51), 241-274. Chang, N. B., Chang,Y. H. & Chen,Y. L. (1997a). Cost-effective and equitable workload operation in solid-waste management systems. Journal of Environmental Engineering, 122(2), 122-131. Chang, N. B., Chen, Y. L., & Wang, S. F. (1997b). Fuzzy interval multiobjective mixed integer programming approach for the optimal planning of solid waste management systems. Fuzzy Sets and Systems, 89(1), 35-60. Chang, N. B., & Wang, S. F. (1997). Integrated analysis of recycling and incineration programs by goal programming techniques. Waste Management & Research, 15, 121-136. Chang, N. B., & Wang, S. F. (1997). Fuzzy goal programming approach for the optimal planning of metropolitan solid waste management systems. European Journal of Operational Research, 99(2), 303-321. Chang, Y. H., & Chang, N. B. (1998). Optimization analysis for the development of short-team solid waste management strategies using presorting process prior to incinerators. Resources, Conservation and Recycling, 24(1), 7-32. Chang, N.B., Davila, E., Dyson, B., Brown, R. (2005) Optimal design for sustainable development of a material recovery facility in a fast-growing urban setting. Waste Management, 25, 833-846. Chen, T., & Lin, C. (2008). Greenhouse gases emissions from waste management practices using life cycle inventory model. Journal of Hazardous Materials, 155(1-2), 23-31. Clift, R., Doig, A., & Finnveden, G. (2000). Application of life cycle assessment to integrated solid waste management. part 1 - methodology. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 78(4), 279-287. Dalemo, M., Sonesson, U., Bjorklund, A., Mingarini, K., Frostell, B., & Jonsson, H. (1997). ORWARE - A simulation model for organic waste handling systems. part 1: Model description. Resources, Conservation and Recycling, 21(1), 17-37. Diaz, R., & Warith, M. (2006). Life-cycle assessment of municipal solid wastes: Development of the WASTED model. Waste Management, 26(8), 886-901. Ekvall, T., & Finnveden, G. (2000). Application of life cycle assessment to integrated solid waste management. part 2 - perspectives on energy and material recovery from paper. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 78(4), 288-294. Environmental Protection Administration of Republic of China (ROCEPA). (2004). The 2004 project on the assistance and assessment of the clearance and reuse procedure of food waste. Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) <Project code: EPA-93-Z102-02-103 > Eriksson, O., Frostell, B., Bjorklund, A., Assefa, G., Sundqvist, J., & Granath, J. (2002). ORWARE - A simulation tool for waste management. Resources, Conservation and Recycling, 36(4), 287-307. Eriksson, O., Reich, M. C., Frostell, B., Bjorklund, A., Assefa, G., & Sundqvist, J. (2005). Municipal solid waste management from a systems perspective. Journal of Cleaner Production, 13(3), 241-252. Fan, Y. R., Huang, G. H., Li, Y. P., Cao, M. F., & Cheng, G. H. (2009). A fuzzy linear programming approach for municipal solid-waste management under uncertainty. Engineering Optimization, 41(12), 1081-1101. Finnveden, G. (1999). Methodological aspects of life cycle assessment of integrated solid waste management systems. Resources, Conservation and Recycling, 26(3-4), 173-187. Finnveden, G., Albertsson, A., Berendson, J., Eriksson, E., Hoglund, L. O., & Karlsson, S. (1995). Solid waste treatment within the framework of life-cycle assessment. Journal of Cleaner Production, 3(4), 189-199. Finnveden, G., & Ekvall, T. (1998). Life-cycle assessment as a decision-support tool—the case of recycling versus incineration of paper. Resources, Conservation and Recycling, 24(3-4), 235-256. Finnveden, G., Johansson, J., Lind, P., & Moberg, A. (2005). Life cycle assessment of energy from solid waste - part 1: General methodology and results. Journal of Cleaner Production, 13(3), 213-229. Galante, G., Aiello, G., Enea, M., & Panascia, E. (2010). A multi-objective approach to solid waste management. Waste Management, 30(8-9), 1720-1728. Guo, P., & Huang, G. H. (2011). Inexact fuzzy-stochastic quadratic programming approach for waste management under multiple uncertainties. Engineering Optimization, 43(5), 525-539. Guo, P., Huang, G. H., He, L., & Sun, B. W. (2008). ITSSIP: Interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environmental Modelling and Software, 23(12), 1422-1437. Harrison, K. W., Dumas, R. D., Solano, E., Barlaz, M. A., Brill, D. J., & Ranjithan, S. R. (2001). Decision support tool for life-cycle-based solid waste management. Journal of Computing in Civil Engineering, 15(1), 44-58. He, L., Huang, G., Zeng, G., & Lu, H. (2008). Fuzzy inexact mixed-integer semiinfinite programming for municipal solid waste management planning. Journal of Environmental Engineering, 134(7), 572-581. Huang, G. H., Chi, G. F., & Li, Y. P. (2005). Long-term planning of an integrated solid waste management system under uncertainty - I. model development. Environmental Engineering Science, 22(6), 823-834. Huang, G. H., Chi, G. F., & Li, Y. P. (2005). Long-term planning of an integrated solid waste management system under uncertainty - II. A north american case study. Environmental Engineering Science, 22(6), 835-853. Huang, G. H., Baetz, B. W., & Patry, G. G. (1993). A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 10(2), 123-146. Li, Y. P., & Huang, G. H. (2007). Fuzzy two-stage quadratic programming for planning solid waste management under uncertainty. International Journal of Systems Science, 38(3), 219-233. Li, Y. P., & Huang, G. H. (2010). An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty. Science of the Total Environment, 408(20), 4296-4308. Li, Y. P., Huang, G. H., Nie, S. L., & Huang, Y. F. (2006). IFTSIP: Interval fuzzy two-stage stochastic mixed-integer linear programming: A case study for environmental management and planning. Civil Engineering and Environmental Systems, 23(2), 73-99. Li, Y. P., Huang, G. H., Nie, X. H., & Nie, S. L. (2008). A two-stage fuzzy robust integer programming approach for capacity planning of environmental management systems. European Journal of Operational Research, 189(2), 399-420. Li, Y. P., Huang, G. H., Yang, Z. F., & Chen, X. (2009). Inexact fuzzy-stochastic constraint-softened programming - A case study for waste management. Waste Management, 29(7), 2165-2177. Liamsanguan, C., & Gheewala, S. H. (2008). The holistic impact of integrated solid waste management on greenhouse gas emissions in phuket. Journal of Cleaner Production, 16(17), 1865-1871. Lin, M. D., Wang, C., & Lin, C. (2006). Evaluation of solid waste management strategies in the taipei metropolitan area of taiwan. Journal of the Air and Waste Management Association, 56(5), 650-656. Maqsood, I., Huang, G. H., & Zeng, G. M. (2004). An inexact two-stage mixed integer linear programming model for waste management under uncertainty. Civil Engineering and Environmental Systems, 21(3), 187-206. Goedkoop, M., & Spriensma, R. (2001). The eco-indicator 99-A damage oriented method for life cycle impact assessment-methodology report. Holland. Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in sao paulo city as determined by LCA. Resources, Conservation and Recycling, 41(1), 47-63. Minciardi, R., Paolucci, M., Robba, M., & Sacile, R. (2008). Multi-objective optimization of solid waste flows: Environmentally sustainable strategies for municipalities. Waste Management, 28(11), 2202-2212. Moberg, A., Finnveden, G., Johansson, J., & Lind, P. (2005). Life cycle assessment of energy from solid waste - part 2: Landfilling compared to other treatment methods. Journal of Cleaner Production, 13(3), 231-240. Mohareb, A. K., Warith, M. A., & Diaz, R. (2008). Modelling greenhouse gas emissions for municipal solid waste management strategies in ottawa, ontario, canada. Resources, Conservation and Recycling, 52(11), 1241-1251. Nie, X., Huang, G. H., & Li, Y. (2009). Capacity planning for waste management systems: An interval fuzzy robust dynamic programming approach. Journal of the Air and Waste Management Association, 59(11), 1317-1330. ROCEPA. (2007a). A study of investigation for recycling and treatment cost for waste recycling items and disposal fee rates settings. Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) <Project code: EPA-95-HA-15-A070> ROCEPA. (2007b). Taiwan emission data system version 7.0. available from: <http://www.ctci.com.tw/air-ei/new_main2-0.htm>. (in Chinese) ROCEPA. (2008a). Overall planning and evaluation of kitchen waste and bulk waste recycling and reuse (I). Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) <Project code: EPA-97-Z102-02-203> ROCEPA. (2008b). Resource sorting, recycling and reuse as well as evaluation of regional cooperation on kitchen waste recycling. Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) <Project code: EPA-96-E102-02-202> ROCEPA. (2009). Overall planning and evaluation of kitchen waste and bulk waste recycling and reuse (II). Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) <Project code: EPA-98-Z102-02-202> ROCEPA. (2010a). Taiwan environment data warehouse. available from: < http://edw.epa.gov.tw/>. (in Chinese) ROCEPA. (2010b). Yearbook of environmental protection statistics. Environmental Protection Administration, Taiwan, Republic of China. (in Chinese) ROCEPA. (2011). Resource recycling four-in-one program. Available from: < http://www.epa.gov.tw/en/epashow.aspx>. Solano, E., Dumas, R. D., Harrison, K. W., Ranjithan, S. R., Barlaz, M. A., & Brill, E. D. (2002). Life-cycle-based solid waste management. II: Illustrative applications. Journal of Environmental Engineering, 128(10), 993-1005. Solano, E., Ranjithan, S. R., Barlaz, M. A., & Brill, E. D. (2002). Life-cycle-based solid waste management. I: Model development. Journal of Environmental Engineering, 128(10), 981-992. Sonesson, U., Dalemo, M., Mingarini, K., & Jonsson, H. (1997). ORWARE - A simulation model for organic waste handling systems. part 2: Case study and simulation results. Resources, Conservation and Recycling, 21(1), 39-54. Srivastava, A. K., & Nema, A. K. (2011). Fuzzy parametric programming model for integrated solid waste management under uncertainty. Journal of Environmental Engineering, 137(1), 69-83. Sun, H. G., Li, Y. P., Huang, G. H., & Suo, M. Q. (2011). An inexact fuzzy-queue programming model for environmental systems planning. Engineering Applications of Artificial Intelligence, 24(5), 840-849. Thorneloe, S. A., Weitz, K., & Jambeck, J. (2007). Application of the US decision support tool for materials and waste management. Waste Management, 27(8), 1006-1020. Tsai, K. T. (2005). The evaluation of food waste recycling strategies in Taipei city, Master thesis. Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan, Republic of China. (in Chinese) Wang, C., Lin, M. D., & Lin, C. (2008). Factors influencing regional municipal solid waste management strategies. Journal of the Air and Waste Management Association, 58(7), 957-964. Wang, S., Huang, G. H., Lu, H. W., & Li, Y. P. (2011). An interval-valued fuzzy linear programming with infinite -cuts method for environmental management under uncertainty. Stochastic Environmental Research and Risk Assessment, 25(2), 211-222. Winkler, J., & Bilitewski, B. (2007). Comparative evaluation of life cycle assessment models for solid waste management. Waste Management, 27(8), 1021-1031. Xanthopoulos, A., & Iakovou, E. (2009). On the optimal design of the disassembly and recovery processes. Waste Management, 29(5), 1702-1711. Zhao, W., der Voet, E. v., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of tianjin, china. Science of the Total Environment, 407(5), 1517-1526. Zimmermann, H. J. (1985). Applications of fuzzy sets theory to mathematical programming. Information Science, 35, 29-58.
摘要: 
有鑑於台中市的都市廢棄物管理系統有需重新檢視及更新的必要,因此本研究將藉由各種數學規劃技術協助重新規劃之。首先,使用線性規劃模式建立台中市都市廢棄物管理最小成本策略,並使用此模式探討空氣污染物減量對於管理系統的影響。接續,使用模糊多目標線性規劃模式求解都市廢棄物管理最佳多目標妥協策略,並使用此模式探討當都市廢棄物管理系統資源回收率如欲提升時,對於最佳多目標妥協策略的影響。最後,運用區間(灰色)理論建立區間線性規劃模式及區間模糊多目標線性規劃模式,並使用此兩模式研究參數不確定性對於管理系統最小成本及最佳多目標妥協策略的影響。
研究結果顯示,最小成本及最佳多目標妥協策略對於台中市都市廢棄物管理系統皆可達到顯著的淨收益,但最佳多目標妥協策略則可同時達成顯著的空氣污染排放之減量。參數不確定性之應用則導致最佳策略之各種成本、收益、廢棄物流向分配及處理設施處理量皆產生極大的區間解,但是參數不確定性的應用也使管理策略更符合實際的決策情況。空氣污染物減量情境分析顯示,系統淨成本皆會伴隨污染物減量比率增加而增加,而懸浮微粒則可被視為此情境分析的污染物減量指標。資源回收率提升之情境分析顯示,於較低資源回收率條件下,若欲維持最佳多目標妥協策略,硫氧化物及氮氧化物排放最小化目標為較優先且重要的目標,但於較高資源回收率時,一氧化碳及懸浮微粒排放最小化目標則轉趨重要。
整體而言,本研究之貢獻為在確定及不確定性的決策環境協助台中市建立經濟或多目標最佳化的都市廢棄物管理策略,這些策略不但擁有經濟效益也可達成環境的效益,並利用模式提出各種可替代的都市廢棄物最佳管理策略供決策者參考。

The objective of this study is to re-plan the municipal solid waste management (MSWM) system in Taichung City by way of various mathematical programming (MP) models since its MSWM program needs to be reviewed. First, linear programming (LP) model was used to determine the least-cost MSWM strategies with different air pollution emission reduction requirements. Then, a fuzzy multi-objective linear programming (FMOLP) model was established to find an optimal multi-objective compromise MSWM strategy. Finally, interval (grey) theory was incorporated into the LP and FMOLP models to establish the interval linear programming (ILP) and interval fuzzy multi-objective linear programming (IFMOLP) models, and we used these two models to investigate the effects of parametric uncertainties on the least-cost and optimal multi-objective compromise MSWM strategies.
The results show that the least-cost and optimal multi-objective compromise MSWM strategies can both achieve larger net profits than the original strategy. The optimal multi-objective compromise MSWM strategy can further achieve a significant reduction of pollution emissions. The parametric uncertainties result in wide ranges for various optimal results such as cost, benefits, MSW streams and throughputs of treatment facilities. However, the employment of uncertainties could make the MSWM strategies more resemble real-world decisions. Examining the scenario of reducing air pollutant emissions we found that the net costs increase as the emission reduction rates increase. Particulate matters (PM) can be used as the emission reduction indicator for the MSWM system. Minimization of the sulfur oxides (SOx) and nitrogen oxides (NOx) emissions are the two major priorities for maintaining the optimal multi-objective compromise MSWM strategy at a lower recyclable recovery rate. For a higher recyclable recovery rate, minimization of carbon monoxide (CO) and PM emissions become priority factors.
In summary, the contribution of this study is help to plan the optimal MSWM strategies for Taichung City under certain and uncertain decision environments. It provides MSWM strategies covering economical and environmental benefits at the same time. Variously alternative MSWM strategies are examined in this study.
URI: http://hdl.handle.net/11455/5834
其他識別: U0005-1806201314374300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.