Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5838
標題: 台灣地區水稻田甲烷通量的觀測與模擬
Observation and simulation of methane fluxes over rice paddies in Taiwan
作者: 馮浦捷
Feng, Pu-Jie
關鍵字: 渦流協變法(EC);Eddy covariance;開放式甲烷分析儀(LI-7700);隨意渦流累積法(REA);甲烷通量;Open path CH4 analyzer;Relaxed eddy accumulation;Methane flux
出版社: 環境工程學系所
引用: Adhya, T.K., A.K. Rath, , P.K. Gupta, V.R. Rao, S.N. Das, K.M. Parida, D.C. Parashar and N. Sethunathan (1994). Methane emission from flooded rice fields under irrigated conditions. Biology and Fertility of Soils 18: 243-248. Baker, B., Guenther, A., Greenberg, J., Goldstein, A., Fall, R., 1999. Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: field data and model comparison. J. Geophys. Res. 104, 26107-26114. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M.: The challenges of measuring methane fluxes and concentrations over a peatland pasture, Agric. For. Meteorol., doi:10.1016/j.agrformet.2011.04.013, in press., 2011. Berendse, F., and Veenendaal, E. M.: Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat, Agric. For. Meteorol.,150, 825–831, 2010. Brut, A., D. Legain, P. Durand, and P. Laville., 1998. A Relaxed Eddy Accumulator for Surface Flux Measurements on Ground-Based Platforms and Aboard Research Vessels. American Meteorological Society, 21,411-427. Businger, J. A. and Oncley, S. P., 1990. Flux measurement with conditional sampling. Journal of Atmospheric and Oceanic Technology, 7, 349-352. Chairoj, P. (1994). Research Report: A Cooperative project on methane emission from rice paddy fields, Department of Agriculture, Ministry of Agriculture and Cooperatives, Thailand and Department of Environmental Science, Japan. Charoensilp, N., B. Buddhaboon, P. Charoendham (1995). Methane emission from deepwater rice fields. Prachinburi Rice Research Center, RRI, Department of Agriculture, Bangkok, Thailand. Christensen, C.S., Hummelshoj, P., Jensen, N.O., Larsen, B., Lohse, C., Pilegaard, K., Skov, H., 2000. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation. Atmos. Environ. 34, 3057-3067. Christensen, T. R., Ekberg, A., Strom, L., Mastepanov, M., Panikov,N., Mats, O., Svensson, B. H., Nykanen, H., Martikainen, P. J.,and Oskarsson, H.: Factors controlling large scale variations in methane emissions from wetlands, Geophys. Res. Lett., 30, 67–61, 2003 Cicerone, R.J., C.C.Delwiche, T.C., Tyler, and P. R. Zimmermann (1992). Methane emission from Californian rice paddies with varied treatment. Global Biogeochemical Cycles 6: 233-248. Cole, V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N., and Sanerack, D.: Agricultural options for mitigation of greenhouse gas emissions, in: Climate Change, edited by: Houghton, R. A. J. T., Meria Filho, L. G., Callander, B. A., Harris, N., Kettenber, A., and Maskell, K., Cambridge University Press, Cambridge,UK, 745–771, 1995 CRRC (1996). Central Rice Research Institute, Cuttack, India. Annual Report 1994-95. Detto, M., Verfaillie, J., Anderson, F., Xu, L., and Baldocchi, D.: Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method, Agric. For. Meteorol., 151, 1312–1324, doi:10.1016/j.agrformet.2011.05.014, 2011. Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution of atmospheric methane, J. Geophy. Res., 99, 17021–17043, 1994. Etheridge, D. M., Steele, L. P., Francey, R. J., and Langenfelds, R. L.: Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, J. Geophys. Res. Atmos., 103, 15979–15993, 1998. Ferretti, D. F., Miller, J. B., White, J. W. C., Etheridge, D. M., Lassey, K. R., Lowe, D. C., MacFarling Meure, C. M., Dreier, M. F., Trudinger, C. M., Van Ommen, T. D., and Langenfelds, R. L.: Atmospheric science: Unexpected changes to the global methane budget over the past 2000 years, Science, 309, 1714–1717, 2005. Gaman, A., Rannik, U., Aalto, P., Pohja, T., Siivola, E., Kulmala, M., Vesala, T., 2004. Relaxed eddy accumulation system for size-resolved aerosol particle flux measurements. J. Atmos. Ocean. Tech. 21, 933-943. Granberg G, Mikkela C, Sundh I, Svensson BH, Nilsson M (1997) Sources of spatial variation in methane emission from mires in northern Sweden: a mechanistic approach in statistical modelling. Global Biogeochemical Cycles, 11, 135–150. Guenther, A., Baugh, W., Davis, K., Hampton, G., Harley, P., Klinger, L., Vierling, L., Zimmerman, P., Allwine, E., Dilts, S., Lamb, B., Westberg, H., Baldocchi, D., Geron, C., Pierce, T., 1996. Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J. Geophys. Res. 100, 18555-18567. Hendriks, D. M. D., Dolman, A. J., van der Molen, M. K., and van Huissteden, J.: A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy, Atmos. Chem. Phys., 8, 431–443, doi:10.5194/acp-8-431-2008, 2008. Hendriks, D. M. D., van Huissteden, J., and Dolman, A. J.: Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow, Agric. For. Meteorol., 150, 757–774, 2009. Holzapfel-Pschorn, A. and W. Seiler (1986). Methane emission during a cultivation period from an Italian rice paddy. Journal of Geophysical Research 91: 11803-11814. Hosono, T., Nouchi, I., 1997. The dependence of methane transport in rice plants on the root zone temperature. Plant and Soil 191,233-240. Houghton, J. T., L. G.Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Marskell (Eds.) (1996), Climate Change 1995: The Science of Climate Change, 572 pp., Cambridge Univ. Press, New York. IRRI (1996). Program Report 1995. International Rice Research Institute, P.O. Box 933, Manila, Philippines. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Climate Change 2001: The Scientific Basis is the most comprehensive and up-to-date scientific assessment of past, present and future climate change. The report: IPCC , 47. Jermsawatdipong, P., P. Murase, P. Prabuddham, Y. Hasathon, M. Chinda , B. Chaiwatana, N. Khomthong, S. Sattawatananon, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994b). Methane emission from plots with differences in fertilizer application in Thai paddy. Soil Science and Plant Nutrition 40: 63-71. Jermsawatdipong, P., P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang and M. Chinda (1994a). Methane emission paddy fields in Thailand. In: Thailand’s present and projected future contribution to global emissions of GHG. Report to Asian Development Bank, pp. 3-35. Kimura, M. and K. Minami (1995). Dynamics of methane in rice fields: Emissions to the atmosphere in Japan and Thailand. In: Peng, S., Ingram K.T., Neue, H.U., Ziska, L.H. (eds.) Climate Change and Rice. Springer-Verlag Berlin, pp. 30-45. Kroon, P. S., Hensen, A., Jonker, H. J. J., Ouwersloot, H. G., Vermeulen,A. T., and Bosveld, F. C.: Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations, Agric. For. Meteorol., 150, 806–816, 2009. Kuo-Hsin Tseng, Jeng-Lin Tsai, Arumugam Alagesan, Ben-Jei Tsuang, Ming-Hwi Yao, Pei-Hsuan Kuo. Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agric. For. Meteorol. 150, 852-859. Lindau, C.W., P.K. Bollich, R.D. DeLaune, W.H. Patrick and V.J. Law (1991). Effect of urea fertilizer and environmental factors on methane emissions from a Louisiana, USA rice field. Plant and Soil 136: 195-203. Long, K. D., Flanagan, L. B., and Cai, T.: Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance, Glob. Change Biol., 16, 2420– 2435, 2010. Lu, W., W. Chen W. Guo and B. Duan (1995). Emission of methane from the rice field affected by irrigation. Paper presented at the Planning Meeting of Methane Emission from Rice Fields, Chonburi, Thailand 19-26.Nov. 1995. China National Rice Reserach Institute, Hangzhou 3100056, Zheijiang, China. Makarim, A. K., A. Bey, R. Boer and P. Setyanto (1995). Methane gas from lowland rice fields in Indonesia: Development and research directions (in Indonesian). Central Research Institute for Food Crops, Bogor, Indonesia. Metra-Corton, T., J. B. Bajita, C. A. Asisk, R. R. Pamplona, and Salamanca (1995) Methane emission from an irrigated rice field. Philippine Rice Research Institute, Munoz, Nueva Ecija, Philippines. Minami, K., Neue, H.-U., 1994. Rice paddies as a methane source. Climate Change 27, 13–26. Mitra, A.P. (1992). Greenhouse gas emission in India: 1991 Methane Campaign.Science Report No 2. Council of Scientific and Industrial Research and Ministry of Environment and Forests, New Delhi, India. Mosier A.R: Gas flux measurement techniques with special reference to techniques suitable for measurements over large ecologically uniform areas, in: Soils and the Greenhouse Effect., edited by: Bouwman, A. F., Wiley, Chichester, 289–301, 1990. Neue, H. U.: Methane emission from rice fields, Bioscience, 43,466–475, 1993. Nugroho, S.G., L. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994a). Methane emission from Indonesian paddy field subjected to several fertilizer treatments. Soil Science and Plant Nutrition 40: 275-281. Nugroho, S.G., L. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994b). Effect of intermittent irrigation on methane emission from an Indonesian paddy field, Soil Science Plant Nutrition 40:609-615 Rinne, J., Riutta, T., Pihlatie, M., Aurela, M., Haapanala, S., Tuovinen, J. P., Tuittila, E. S., and Vesala, T.: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique, Tellus B, 59, 449–457, 2007. S.N. Satpathy, S. Mishra, T.K. Adhya1, B. Ramakrishnan, V.R. Rao and N. Sethunathan. Cultivar variation in methane efflux from tropical rice. Plant Soil 202, 223–229. Sass, R. L. and F.M. Fisher (1995). Methane emissions from Texax rice fields: a five year study. In: Peng, S., Ingram K.T., Neue, H.U., Ziska, L.H. (eds.) Climate Change and Rice. Springer-Verlag Berlin, pp. 46-59. Schutz H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg and W. Seiler (1989). A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. Journal of Geophysical Research 94: 16405-16416. Seiler, W., A. Holzapfel-Pschorn, R. Conrad and D. Scharfe (1984). Methane emission from rice paddies.Journal of Atmospheric Chemistry 1: 241-268. Shin, Y.K., S.H. Yun and M.E. Park (1995). Estimation of methane emission by water management and rice straw application in paddy soil in Korea. Journal of Korean Society of Soil Science and Fertility 28(3): 261-265. Siriratpiriya, O. (1994). Methane emission from rice fields in Thailand. Institute of Environmental Research, Chulalongkorn University, Bangkok, Thailand. Skov, H., Brooks, S.B., Goodsite, M.E., Lindberg, S.E., Meyers, T.P., Landis, M.S., Larsen, M.R.B., Jensen, B., McConville, G., Christensen, J., 2006. Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos. Environ. 40, 5452-5463. Stull, R. b., 1988, “An introduction to boundary layer meteorology”, Kluwer academic, Dordrecht. Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research, 113, G00A10, doi: 10.1029/2007JG000496. Wang, M.X. (1995) Methane emission rates from various rice fields in China. In: China Contribution to global change studies, Ye Du Zheng and Lin Hai, eds. China global Change Report No. 2. Science Press, Beijing, p.154-160 Wang, M.X., A.G. Dai, J. Huang L.X. Ren, R.X. Shen, H. Schutz, W. Seiler, R.A. Rasmussen and M.A.K. Khalil (1993). Methane source from China. Scientia Atmospherica Sinica 17(2): 52-64. X. Hou, G. X. Chen, Z. P. Wang, O. Van Cleemput, and W. H. Patrick, Jr..,2000,"Methane and Nitrous Oxide Emissions from Rice Field in Relation to Soil Redox and Microbiological Processes",SOIL SCI.SOC. AM. J., VOL.64, NOVEMBER-DECEMBER 2000 Yagi, K. and K. Minami (1990) Effects of organic matter application on methane emission from some Japanese paddy fields. Soil Science and Plant Nutrition 36: 599-610. Yagi, K. and K. Minami (1991) Emission and production of methane in the paddy fields of Japan. Japan Agricultural Research Quarter (JARQ) 25: 165-171. Yagi, K., 1997. Methane emission from paddy fields. Bull. Natl.Inst. Agro-Environ. Sci., Tsukuba, Japan 14, 96–210. Zou, J., Huang, Y., Jiang, J., Zheng, X., and Sass, R. L.: A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application Glob. Biogeochem. Cy., 19, doi:10.1029/2004GB002401, 2005 中央氣象局網站 (http://www.cwb.gov.tw) 行政院農業委員會網站 (http://www.coa.gov.tw/show_index.php) 張家嘉,2006,水稻田溫室氣體排放動態模式之發展及情景評估,碩士論文,國立雲林科技大學研究所。 林佑勳,2009,以快速甲烷分析儀結合紊流協變性系統探討甲烷通量之研究,碩士論文,國立中興大學環境工程研究所。 張晉豪,2011,利用隨意渦流累積系統觀測水稻田溫室氣體CH4及CO2之探討,碩士論文,國立中興大學環境工程研究所。 農糧署,2011,稻米良好農業規範
摘要: 
許多研究指出甲烷對全球氣候變化之影響顯著,甲烷的全球暖化潛勢為二氧化碳之23倍,主要來源為農業、掩埋場、濕地及家畜排泄物等。本研究以觀測霧峰農試所85號實驗田之甲烷通量為目標,搭配台灣稻作一年二期之頻率,於2012年2月22日至2012年6月5日進行實地觀測。利用渦流協變法(Eddy Covariance, EC)、三維音波風速計(CSAT3)搭配開放式甲烷分析儀(LI-7700),量測水稻田甲烷通量及氣象因子等資料,亦以隨意渦流累積法(Relaxed Eddy Accumulation, REA)進行方法校驗。
本研究以統計方法將REA及EC進行相關性迴歸,R2達0.81,顯示兩方法間具一定可信度,土壤溫度與甲烷排放為高度正相關,本研究結果顯示通量於下午較高,約16 μg m-2 s-1,通量介於-5 ~ 16μg m-2 s-1間。影響田間水位變化之原因為人為灌溉及自然降雨。實驗期間之水位深度與累積雨量具相同變化趨勢,當土壤含水率及水位深度下降時,其甲烷通量呈上升趨勢。

Many researches mentioned that the effect in global warming of methane is Significant, global warming potential of methane is 23, the major source of methane is agriculture, landfill, wetland and domesticated animal. In this study, the target is observing methane flux on Wung Fong Agricultural Research Institute NO.85, coordinating with frequency of rice-planting in Taiwan, in situ measurement from 22th February to 5th June in 2012. We used the fast methane analyzer based on three dimensional sonic anemometers (csat3) with eddy covariance system and Relaxed Eddy Accumulation observed methane flux.
This experiment shows that the coefficient of determination between REA and EC is 0.81, the soil temperature and methane generation exist a strong positive correlation, the methane flux range about -5 to 16μg m-2 s-1. Irrigation and rainfall are the reasons which affect the water depth, water depth and accumulated rainfall had the same trend during the experiment. The result shows that when soil moisture and water depth decline, the methane flux raise.
URI: http://hdl.handle.net/11455/5838
其他識別: U0005-2607201218310900
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat
nchu-101-7099063009-1.pdf4.31 MBAdobe PDFView/Open
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.