Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5845
標題: 多層複合膜之製造及其於CO2分離之研究
Preparation of multi-layer composite membranes for CO2 separation
作者: 張斯巽
Chang, Ssu-Hsun
關鍵字: 氣體分離;Membrane separation;二氧化碳;多層複合薄膜;C/Al2O3基材;環境忍受度;Carbon dioxide;Multi-layer composite membrane;C/Al2O3 substrate;environmental tolerance
出版社: 環境工程學系所
引用: [1] M. Ulbricht, Advanced functional polymer membranes, Polymer, 47 (2006) 2217-2262. [2] 林建中, 高分子材料性質與應用, 高立圖書有限公司, (1998). [3] D.R. Paul, Polymeric gas separation membranes, CRC, 1994. [4] B.-G. Wang, Y. Miyazaki, T. Yamaguchi, S.-i. Nakao, Design of a vapor permeation membrane for VOC removal by the filling membrane concept, Journal of Membrane Science, 164 (2000) 25-35. [5] M. Mulder, Basic principles of membrane technology, Springer, 1996. [6] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science, 26 (2001) 853-893. [7] L. Shao, B.T. Low, T.-S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31. [8] S. Rutherford, D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, 3 (1997) 283-312. [9] J. Seader, E.J. Henley, Separation process principles, Recherche, 67 (2006) 02. [10] C. Staudt-Bickel, W. J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, Journal of Membrane Science, 155 (1999) 145-154. [11] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Industrial & Engineering Chemistry Research, 48 (2009) 4638-4663. [12] M.M. Lopez-Gonzalez, V. Compan, E. Saiz, E. Riande, J. Guzman, Effect of the upstream pressure on gas transport in poly(ether-imide) films, Journal of Membrane Science, 253 (2005) 175-181. [13] Y.S. Bhole, P.B. Karadkar, U.K. Kharul, Nitration and amination of polyphenylene oxide: Synthesis, gas sorption and permeation analysis, European Polymer Journal, 43 (2007) 1450-1459. [14] J.S. McHattie, W.J. Koros, D.R. Paul, Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings, Polymer, 32 (1991) 840-850. [15] B. Bikson, J.K. Nelson, N. Muruganandam, Composite cellulose acetate/poly(methyl methacrylate) blend gas separation membranes, Journal of Membrane Science, 94 (1994) 313-328. [16] T.M. Nakagawa T, Encyclopedia of membrane separatio technology, Fuji Technosystem Tokyo, (1991) 1-28. [17] M. Aguilar‐Vega, D. Paul, Gas transport properties of polyphenylene ethers, Journal of Polymer Science Part B: Polymer Physics, 31 (1993) 1577-1589. [18] M. Nakata, H. Kumazawa, Gas permeability and permselectivity of plasma‐treated polyethylene membranes, Journal of applied polymer science, 101 (2006) 383-387. [19] K.C. Khulbe, T. Matsuura, G. Lamarche, A.M. Lamarche, X-ray diffraction analysis of dense PPO membranes, Journal of Membrane Science, 170 (2000) 81-89. [20] M. Pourafshari Chenar, M. Soltanieh, T. Matsuura, A. Tabe-Mohammadi, K.C. Khulbe, The effect of water vapor on the performance of commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes in CO2/CH4 separation applications, Journal of Membrane Science, 285 (2006) 265-271. [21] A.E. Polotsky, G.A. Polotskaya, Study on top layer structure of composite membranes, Journal of Membrane Science, 140 (1998) 97-102. [22] F. Hamad, K.C. Khulbe, T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes, Journal of Membrane Science, 256 (2005) 29-37. [23] K. Simons, K. Nijmeijer, M. Wessling, Gas–liquid membrane contactors for CO2 removal, Journal of Membrane Science, 340 (2009) 214-220. [24] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science, 32 (2007) 483-507. [25] C. Song, T. Wang, X. Wang, J. Qiu, Y. Cao, Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes, Separation and Purification Technology, 58 (2008) 412-418. [26] S.S. Hosseini, Y. Li, T.-S. Chung, Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles, Journal of Membrane Science, 302 (2007) 207-217. [27] G. Ciobanu, G. Carja, O. Ciobanu, Preparation and characterization of polymer–zeolite nanocomposite membranes, Materials Science and Engineering: C, 27 (2007) 1138-1140. [28] H. Cong, J. Zhang, M. Radosz, Y. Shen, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation, Journal of Membrane Science, 294 (2007) 178-185. [29] T.-H. Weng, H.-H. Tseng, M.-Y. Wey, Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation, International Journal of Hydrogen Energy, 34 (2009) 8707-8715. [30] M. Moaddeb, W.J. Koros, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, Journal of Membrane Science, 125 (1997) 143-163. [31] C. Hibshman, C.J. Cornelius, E. Marand, The gas separation effects of annealing polyimide–organosilicate hybrid membranes, Journal of Membrane Science, 211 (2003) 25-40. [32] Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, Study on polyimide/TiO2 nanocomposite membranes for gas separation, Desalination, 146 (2002) 49-55. [33] A. Xiaoli, H. Xiaoling, Study on Organic-Inorganic Hybrid Membranes, PROGRESS IN CHEMISTRY-BEIJING-, 16 (2004) 654-659. [34] F. Moghadam, M.R. Omidkhah, E. Vasheghani-Farahani, M.Z. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology, 77 (2011) 128-136. [35] R.T. Adams, J.S. Lee, T.-H. Bae, J.K. Ward, J.R. Johnson, C.W. Jones, S. Nair, W.J. Koros, CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes, Journal of Membrane Science, 367 (2011) 197-203. [36] M. Sadeghi, M.A. Semsarzadeh, M. Barikani, M. Pourafshari Chenar, Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes, Journal of Membrane Science, 376 (2011) 188-195. [37] J. Caro, M. Noack, P. Kolsch, R. Schafer, Zeolite membranes – state of their development and perspective, Microporous and Mesoporous Materials, 38 (2000) 3-24. [38] S.A. Hashemifard, A.F. Ismail, T. Matsuura, Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal, Chemical Engineering Journal, 170 (2011) 316-325. [39] S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes, Separation and Purification Technology, 90 (2012) 162-172. [40] S. Duan, T. Kouketsu, S. Kazama, K. Yamada, Development of PAMAM dendrimer composite membranes for CO2 separation, Journal of Membrane Science, 283 (2006) 2-6. [41] W. Yoshida, Y. Cohen, Ceramic-supported polymer membranes for pervaporation of binary organic/organic mixtures, Journal of Membrane Science, 213 (2003) 145-157. [42] U. Beuscher, C. H. Gooding, The influence of the porous support layer of composite membranes on the separation of binary gas mixtures, Journal of Membrane Science, 152 (1999) 99-116. [43] X. Ding, Y. Cao, H. Zhao, L. Wang, Q. Yuan, Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation, Journal of Membrane Science, 323 (2008) 352-361. [44] J.-J. Shieh, T.S. Chung, Cellulose nitrate-based multilayer composite membranes for gas separation, Journal of Membrane Science, 166 (2000) 259-269. [45] Z. Wang, M. Li, Y. Cai, J. Wang, S. Wang, Novel CO2 selectively permeating membranes containing PETEDA dendrimer, Journal of Membrane Science, 290 (2007) 250-258. [46] A.K. Jain, N.K. Acharya, V. Kulshreshtha, K. Awasthi, M. Singh, Y.K. Vijay, Study of hydrogen transport through porous aluminum and composite membranes, International Journal of Hydrogen Energy, 33 (2008) 346-349. [47] L.M. van der Haar, H. Verweij, Homogeneous porous perovskite supports for thin dense oxygen separation membranes, Journal of Membrane Science, 180 (2000) 147-155. [48] Y. Cai, Z. Wang, C. Yi, Y. Bai, J. Wang, S. Wang, Gas transport property of polyallylamine–poly(vinyl alcohol)/polysulfone composite membranes, Journal of Membrane Science, 310 (2008) 184-196. [49] L. Deng, T.-J. Kim, M.-B. Hagg, Facilitated transport of CO2 in novel PVAm/PVA blend membrane, Journal of Membrane Science, 340 (2009) 154-163. [50] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang, S. Wang, Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine, Journal of Membrane Science, 378 (2011) 425-437. [51] S. Basu, A. Cano-Odena, I.F.J. Vankelecom, Asymmetric membrane based on MatrimidR and polysulphone blends for enhanced permeance and stability in binary gas (CO2/CH4) mixture separations, Separation and Purification Technology, 75 (2010) 15-21. [52] R. Du, X. Feng, A. Chakma, Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations, Journal of Membrane Science, 279 (2006) 76-85. [53] M. Sadrzadeh, M. Amirilargani, K. Shahidi, T. Mohammadi, Gas permeation through a synthesized composite PDMS/PES membrane, Journal of Membrane Science, 342 (2009) 236-250. [54] F. Xiangli, W. Wei, Y. Chen, W. Jin, N. Xu, Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology, Journal of Membrane Science, 311 (2008) 23-33. [55] W. Wei, S. Xia, G. Liu, X. Dong, W. Jin, N. Xu, Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes, Journal of Membrane Science, 375 (2011) 334-344. [56] A.S. Augustine, Y.H. Ma, N.K. Kazantzis, High pressure palladium membrane reactor for the high temperature water–gas shift reaction, International Journal of Hydrogen Energy, 36 (2011) 5350-5360. [57] A. Huang, N. Wang, J. Caro, Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports, Journal of Membrane Science, 389 (2012) 272-279. [58] M. Drobek, J. Motuzas, M. van Loon, R.W.J. Dirrix, R.A. Terpstra, A. Julbe, Coupling microwave-assisted and classical heating methods for scaling-up MFI zeolite membrane synthesis, Journal of Membrane Science, 401–402 (2012) 144-151. [59] M. Teixeira, M.C. Campo, D.A. Pacheco Tanaka, M.A. Llosa Tanco, C. Magen, A. Mendes, Composite phenolic resin-based carbon molecular sieve membranes for gas separation, Carbon, 49 (2011) 4348-4358. [60] Y. Zhu, S. Xia, G. Liu, W. Jin, Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures, Journal of Membrane Science, 349 (2010) 341-348. [61] R. Zhou, Q. Zhang, J. Shao, Z. Wang, X. Chen, H. Kita, Optimization of NaY zeolite membrane preparation for the separation of methanol/methyl methacrylate mixtures, Desalination, 291 (2012) 41-47. [62] C. Song, T. Wang, H. Jiang, X. Wang, Y. Cao, J. Qiu, Gas separation performance of C/CMS membranes derived from poly(furfuryl alcohol) (PFA) with different chemical structure, Journal of Membrane Science, 361 (2010) 22-27. [63] A.K. Itta, H.-H. Tseng, M.-Y. Wey, Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation, Journal of Membrane Science, 372 (2011) 387-395. [64] H.-H. Tseng, A.K. Itta, Modification of carbon molecular sieve membrane structure by self-assisted deposition carbon segment for gas separation, Journal of Membrane Science, 389 (2012) 223-233. [65] T.-S. Chung, J.-J. Shieh, W.W.Y. Lau, M.P. Srinivasan, D.R. Paul, Fabrication of multi-layer composite hollow fiber membranes for gas separation, Journal of Membrane Science, 152 (1999) 211-225. [66] F. Huber, J. Springer, M. Muhler, Plasma polymer membranes from hexafluoroethane/hydrogen mixtures for separation of oxygen and nitrogen, Journal of applied polymer science, 63 (1997) 1517-1526. [67] W. Wei, S. Xia, G. Liu, X. Gu, W. Jin, N. Xu, Interfacial adhesion between polymer separation layer and ceramic support for composite membrane, AIChE Journal, 56 (2010) 1584-1592. [68] H.-H. Tseng, K. Shih, P.-T. Shiu, M.-Y. Wey, Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane, Journal of Membrane Science, 405–406 (2012) 250-260. [69] 翁子翔, 高分子薄膜與多層複合薄膜氣體分離特性之研究, 國立中興大學環境工程研究所 博士論文, (2010). [70] T.-H. Weng, H.-H. Tseng, M.-Y. Wey, Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation, International Journal of Hydrogen Energy, 35 (2010) 6971-6983. [71] T.-H. Weng, H.-H. Tseng, M.-Y. Wey, Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane, Journal of Membrane Science, 369 (2011) 550-559. [72] T. Kyotani, Control of pore structure in carbon, Carbon, 38 (2000) 269-286. [73] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, Journal of Membrane Science, 359 (2010) 115-125. [74] S.M. Saufi, A.F. Ismail, Fabrication of carbon membranes for gas separation––a review, Carbon, 42 (2004) 241-259. [75] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: A review, Journal of Environmental Sciences, 20 (2008) 14-27. [76] P.S. Tin, T.-S. Chung, Y. Liu, R. Wang, Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide, Carbon, 42 (2004) 3123-3131. [77] H.-J. Lee, H. Suda, K. Haraya, Characterization of the post-oxidized carbon membranes derived from poly(2,4-dimethyl-1,4-phenylene oxide) and their gas permeation properties, Separation and Purification Technology, 59 (2008) 190-196. [78] S.S. Hosseini, T.S. Chung, Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification, Journal of Membrane Science, 328 (2009) 174-185. [79] W.N.W. Salleh, A.F. Ismail, Carbon hollow fiber membranes derived from PEI/PVP for gas separation, Separation and Purification Technology, 80 (2011) 541-548. [80] M. Kiyono, P.J. Williams, W.J. Koros, Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes, Journal of Membrane Science, 359 (2010) 2-10. [81] A.K. Itta, H.-H. Tseng, M.-Y. Wey, Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation, International Journal of Hydrogen Energy, 35 (2010) 1650-1658. [82] W.N.W. Salleh, A.F. Ismail, Effects of carbonization heating rate on CO2 separation of derived carbon membranes, Separation and Purification Technology, 88 (2012) 174-183. [83] A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, Journal of Membrane Science, 193 (2001) 1-18. [84] S.K. Verma, P.L. Walker Jr, Preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons, Carbon, 30 (1992) 829-836. [85] I. Menendez, A.B. Fuertes, Aging of carbon membranes under different environments, Carbon, 39 (2001) 733-740. [86] C.W. Jones, W.J. Koros, Carbon composite membranes: a solution to adverse humidity effects, Industrial & Engineering Chemistry Research, 34 (1995) 164-167. [87] J. Petersen, M. Matsuda, K. Haraya, Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation, Journal of Membrane Science, 131 (1997) 85-94. [88] C. Liang, G. Sha, S. Guo, Carbon membrane for gas separation derived from coal tar pitch, Carbon, 37 (1999) 1391-1397. [89] A. Soffer, D. Rosen, S. Saguee, J. Koresh, Carbon membranes, GB patent, 2207666 (1989). [90] K.C. Khulbe, B. Kruczek, G. Chowdhury, S. Gagne, T. Matsuura, S.P. Verma, Characterization of membranes prepared from PPO by Raman scattering and atomic force microscopy, Journal of Membrane Science, 111 (1996) 57-70. [91] K.C. Khulbe, G. Chowdhury, B. Kruczek, R. Vujosevic, T. Matsuura, G. Lamarche, Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation, Journal of Membrane Science, 126 (1997) 115-122. [92] K.C. Khulbe, F. Hamad, C. Feng, T. Matsuura, T. Gumi, C. Palet, Characterization of the poly(phenylene oxide) dense membrane prepared at different temperatures, Separation and Purification Technology, 36 (2004) 53-62. [93] L. Zhang, G. He, W. Zhao, M. Tan, X. Li, Effect of formamide additive on the structure and gas permeation performance of polyethermide membrane, Separation and Purification Technology, 73 (2010) 188-193.
摘要: 
近年來薄膜分離已廣泛運用於氣體分離上,且應用於各種工業製程中。就薄膜分離二氧化碳的技術而言,目前已有許多商業型薄膜如高分子膜,其製備容易,操作及維護也相當方便,但高分子薄膜雖然有很好選擇率,可是卻有滲透率不佳等問題。相反地,無機薄膜如碳膜等則有良好熱穩定性與機械強度,但其成本高,且製備過程繁複,因此有學者提出有機-無機複合薄膜,希望能結合兩種類型薄膜的優點,增加薄膜的應用領域。
本研究將合成高分子/碳/氧化鋁等多層複合薄膜,以提升對稱性高分子膜之氣體分離表現,研究將評估兩種不同型態的複合膜,以提升其氣體滲透選擇率,在第一型態中,高分子層與碳層分別作為選擇層及中間層,利用不同高分子前驅物衍生的碳基質修飾氧化鋁基材的表面粗糙度及孔洞結構,探討結合高分子選擇層與碳基材之複合薄膜對於不同氣體的滲透能力以及選擇性。而在第二型態中,高分子層與碳層分別做為表層及選擇層,利用不同黏度的高分子修飾碳膜選擇層的孔洞結構,探討結合高分子表層與碳膜選擇層之複合薄膜的氣體滲透選擇能力及耐用性。
結果顯示,在第一型態中,氧化鋁基材經碳層修飾過後,擔體粗糙度皆有所下降,其中以PPO衍生性碳膜層表面較為緻密平滑,與PPO高分子選擇層結合成PPO/C/Al2O3複合薄膜後,擁有高CO2氣體滲透率147.5 Barrer且CO2/N2及CO2/CH4選擇率分別為20.4及19.3。在第二型態複合薄膜中,碳膜選擇層經由高分子層修飾後,複合薄膜的孔洞結構變得更加緻密,雖然CO2氣體滲透率由147.5 Barrer下降77.8 Barrer,但CO2/N2及CO2/CH4選擇率則分別提高至26.2及46.3。

In recent years, membrane technology has been widely used in a wide variety of large-scale industrial application for gas separation. Organic membranes are considered to be one of the promising materials for membrane-based gas separation because of its easy preparation, operation and maintenance. However, the tradeoff between permeability and selectivity is one of the biggest problems faced by pure polymer membranes. In contrast, inorganic membrane, such as carbon molecular sieving membrane, shows excellent permeation and separation properties even under high pressure. Therefore, recent research efforts have focused on multi-layer composite membranes to overcome the tradeoff problem through using porous substrate to support polymer membrane.
In this research, polymer/carbon/ceramic multilayer composite membrane with competitively separation performance to symmetric polymeric membrane was synthesized on the top of α-Al2O3 substrate. In order to improve the permselectivity of composite membrane, two kind of polymer/carbon composite membrane were prepared. First, the polymer and carbon film were acing as the selective and intermediate layer, respectively, in which the surface roughness and pore structure of Al2O3 substrate was modified with different carbon texture. Second, the polymer and carbon film were acing as skin and selective layer, respectively, in which the pore size of carbon layer was altered with different viscosity of polymer dope.
The results indicate that in the first kind composite membrane, the roughness of Al2O3 substrate was decreased slightly with modification of carbon layer, especially which derived from PPO polymer. After coating with PPO selectivity layer, the resulting PPO/C/Al2O3 composite membranes presents a high CO2 gas permeability (147.5 Barrer), and the selectivity of CO2/N2 and CO2/CH4 is 20.4 and 19.3, respectively. In the second composite membrane, after modification with PPO polymer the composite membrane show a dense structure. The permeability of CO2 through the PPO/CMS/Al2O3 composite membrane decreased (77.8 Barrer), but the selectivity of CO2/N2 and CO2/CH4 increased significantly, with values at 26.2 and 46.2, respectively.
URI: http://hdl.handle.net/11455/5845
其他識別: U0005-1107201211584400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.