Please use this identifier to cite or link to this item:
標題: 大氣粗細懸浮微粒的金屬元素季節性變化之研究
A Study on Seasonal Variations in Metallic Elements of Ambient Coarse and Fine Particulates
作者: 謝慶衡
Hsieh, Ching-Heng
關鍵字: PM2.5;PM2.5;PM2.5-10;金屬元素;季節性變化;主成分分析;沙塵暴;PM2.5-10;metallic elementsseasonal variations;PCA;Asian dust storm
出版社: 環境工程學系所
引用: 1. Allen, A. G., E. Nemitz, J. P. Shi, R. M. Harrison, R. M and J. C. Greenwood, ”Size distributions of trace metals in atmospheric aerosols in the United Kingdom,” Atmospheric Environment, Vol. 35, No. 27, pp. 4581–4591. (2001) 2. Brook, R. D. and S. Rajagopalan, ”Particulate Matter, Air Pollution, and Blood Pressure,” Journal of the American Society of Hypertension, Vol. 3, No. 5, pp. 332–350 (2009). 3. Chang, C. Y., C. F. Wang, D. T. Mui, M. T. Cheng and H. L. Chiang, “Characteristics of Elements in Waste Ashes from a Solid Waste Incinerator in Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 766-773 (2009). 4. Chen, J., M. Tan, Y. Li, J. Zheng, Y. Zhang, Z. Shan, G. Zhang and Y. Li, “Characteristics of Trace Elements and Lead Isotope Ratios in PM2.5 from Four Sites in Shanghai,” Journal of Hazardous Materials, Vol. 156, No. 1-3, pp. 36-43 (2008). 5. Cheng, M. T., C. L. Horng, Y. R. Su, L. K. Lin, Y. C. Lin and C. C. K. Chou, “Particulate Matter Characteristics during Agricultural Waste Burning in Taichung City, Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 187-192 (2009). 6. Cheng, M. T., W. C. Chou, C. P. Chio, S. C. Hsu, Y. R. Su, P. H. Kuo, B. J. Tsuang, S. H. Lin and C. C. K. Chou, “Compositions and Source Apportionments of Atmospheric Aerosol during Asian Dust Storm and Local Pollution in Central Taiwan,” Journal of Atmospheric Chemistry, Vol. 61, No. 2, pp. 155-173 (2008). 7. Cheng, M. T., C. P. Chio, C. Y. Huang, J. M. Chen, C. F. Wang and C. Y. Kuo, “Chemical Compositions of Fine Particulates Emitted from Oil-fired Boilers,” Journal of Environmental Engineering and Management, Vol. 18, No. 5, pp. 355-362 (2008). 8. Cheng, M. T., Y. C. Lin, C. P. Chio, C. F. Wang and C. Y. Kuo, “Characteristics of Aerosols Collected in Central Taiwan during an Asian Dust Event in Spring 2000,” Chemosphere, Vol. 61, No. 10, pp. 1439-1450 (2005). 9. Cheng, M. T., Y. C. Lin, W. T. Lee and C. Y. Liu, “Effects of Transported Asian Dust Storm on Aerosol Composition and Size Distribution in Central Taiwan in 2002,” Journal of Environmental Engineering and Management, Vol. 17, No. 3, pp. 189-196.(2007) 10. Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, No. 39, pp. 6893-6905 (2004). 11. Christian, T. J., R. J. Yokelson, B. Cardenas, L. T. Molina, G. Engling and S. C. Hsu, “Trace Gas and Particle Emissions from Domestic and Industrial Biofuel Use and Garbage Burning in Central Mexico,” Atmospheric Chemistry and Physics Discussions, Vol. 9, No. 2, pp. 10101-10152 (2009). 12. Clarke, L. B and L. L. Sloss, “Trace elements - emissions from coal combustion and gasification. IEACR/49, London, UK, IEA Coal Research. (1992) 13. Cohen, D. D., D. Garton, E. Stelcer, O. Hawas, T. Wang, S. Poon, J. Kim, B. C. Choi, S. N. Oh, H. J. Shin, M. Y. Ko and M. Uematsu, “Multielemental Analysis and Characterzation of Fine Aerosols at Several Key ACE-Asia Sites,” Journal of Geophysical Research, Vol. 109, D19S12, doi: 10.1029/2003JD003569 (2004). 14. Cozzi, E., G. Adami, P. Barbieri, E. Reisenhofer and M. Bovenzi, “Is PM10 Mass Measurement a Reliable Index for Air Quality Assessment ? an Environmental Study in a Geographical Area of North-eastern Italy,” Environmental Monitoring and Assessment, Vol. 144, No. 1-3, pp. 389-401 (2008). 15. Dongarra, G., E. Manno and D. Varrica, “Possible Markers of Traffic-related Emissions,” Environmental Monitoring and Assessment, Vol. 154, No. 1-4, pp. 117-125 (2009). 16. Fujimori, E., T. Kobayashi, M. Aoki, M. Sakaguchi, T. Saito, T. Fukai and H. Haragughi, “Annual Variations of the Elemental Concentrations of PM10 in Ambient Air of Nagoya City as Determined by ICP-AES and ICP-MS,” Analytical Sciences, Vol. 23, No. 12, pp. 1359-1366 (2007). 17. Fukai, T., T. Kobayashi, M. Sakaguchi, M. Aoki, T. Saito, E. Fujimori and H. Haraguchi, “Chemical Characterization of Airborne Particulate Matter in Ambient Air of Nagoya, Japan, as Studied by the Multielement Determination with ICP-AES and ICP-MS,” Analytical Sciences, Vol. 23, No. 2, pp. 207-213 (2007). 18. Gao, Y., E. D. Nelson, M. P. Field, Q. Ding, H. Li, R. M. Sherrell, C. L. Gigliotti, D. A.Van Ry, T. R. Glenn and S. J. Eisenreich, ”Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York–New Jersey harbor estuary,” Atmospheric Environment, vol 36, No. 6, pp. 1077–1086 (2002). 19. Gietl, J. K., L. Roy, J. T. Alistair, M. H. Roy “Identification of Brake Wear Particles and Derivation of a Quantitative Tracer for Brake Dust at a Major Road,” Atmospheric Environment, Vol. 44 No. 2, pp. 141-146 (2010). 20. Hopke, P. K., D. D. Cohen, B. A. Begum, S. K. Biswas, B. Ni, G. G. Pandit, M. Santoso, Y. S. Chung, P. Davy, A. Markwitz, S. Waheed, N. Siddique, F. L. Santos, P. C. B. Pabroa, M. C. S. Seneviratne, W. Wimolwattanapun, S. Bunprapob, T. B. Vuong, P. D. Hien and A. Markowicz, “Urban Air Quality in the Asian Region,” Science of the Total Environment, Vol. 404, No. 1, pp. 103-112 (2008). 21. Horng, C. L. and M. T. Cheng, “Characterization of PM2.5 and Conversion Rate of Sulfur Dioxide to Sulfate in Inland Areas of Taiwan,” Journal of Environmental Engineering and Science, Vol. 7, No. 3, pp. 175-182 (2008). 22. Hsu, S. C., S. C. Liu, C. Y. Lin, R. T. Hsu, Y. T. Huang and Y. W. Chen, “Metal Compositions of PM10 and PM2.5 Aerosols in Taipei during Spring, 2002,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 15, No. 5, pp. 925-948 (2004). 23. Hsu, S. C., S. C. Liu, W. L. Jeng, F. J. Lin, Y. T. Huang, C. S. C. Lung, T. H. Liu and J. Y. Tu, “Variations of Cd/Pb and Zn/Pb Ratios in Taipei Aerosols Reflecting Long-range Transport or Local Pollution Emissions,” Science of the Total Environment, Vol. 347, No. 1-3, pp. 111-121 (2005). 24. Hsu, S. C., S. C. Liu, Y. T. Huang, C. S. C. Lung, F. Tsai, J. Y. Tu and S. J. Kao, “A Criterion for Identifying Asian Dust Events Based on Al Concentration Data Collected from Northern Taiwan between 2002 and Early 2007,” Journal of Geophysical Research, Vol. 113, D18306, doi:10.1029/2007JD009574 (2008). 25. Hsu, S. C., S. C. Liu, Y. T. Huang, C. C. K. Chou, C. S. C. Lung, T. H. Liu, J. Y. Tu and F. Tsai, “Long-range Southeastward Transport of Asian Biosmoke Pollution: Signature Detected by Aerosol Potassium in Northern Taiwan,” Journal of Geophysical Research, Vol. 114, D14301, doi:10.1029/2009JD011725 (2009). 26. Huang, S., J. T., H. L., M. H., Q. L., J. F., Z. W and G. H, ”Multivarite analysis of trace element concentration in atmospheric deposition in the Yangtze River Delta, East China,” Atmospheric Environment, Vol. 43, No. 4, pp. 5781-5790 (2009). 27. Hueglin, C., R. Gehrig, U. Baltensperger, M. Gysel, C. Monn and H. Vonmont, “Chemical Characterisation of PM2.5, PM10 and Coarse Particles at Urban, near City and Rural Sites in Switzerland,” Atmospheric Environment, Vol. 39, No. 4, pp. 637-651 (2005). 28. Iijima, A., K. Sato, Y. Fujitani, E. Fujimori, Y. Saito, K. Tanabe, T. Ohara, K. Kozawa and N. Furuta, “Clarification of the Predominant Emission Sources of Antimony in Airborne Particulate Matter and Estimation of Their Effects on the Atmosphere in Japan,” Environmental Chemistry, Vol. 6, No. 2, pp. 122-132 (2009). 29. Ito, K., N. Xue and G. Thurston, “Spatial Variation of PM2.5 Chemical Species and Source-apportioned Mass Concentrations in New York City,” Atmospheric Environment, Vol. 38, No. 31, pp. 5269-5282 (2004). 30. Jang, H and S. J. Kim, ”The effects of antimony trisulfide (Sb2S3) and zirconium silicate (ZrSiO4) in the automotive brake friction material on friction characteristics,” Wear, vol. 239, No. 2, pp. 229-236 (2000). 31. Kim, K. H., C. H. Kang, C. J. Ma, J. H. Lee, K. C. Choi and Y. H. Youn, “Airborne Cadmium in Spring Season between Asian Dust and Non-Asian Dust Periods in Korea,” Atmospheric Environment, Vol. 42, No. 4, pp. 623-631 (2008). 32. Kazunari, O., Yasunori, K., Shinji, O. and Atsushi, Y, “Atmospheric Transport Route Determines Components of Asian Dust and Health Effects in Japan,“ Atmospheric Environment, Vol. 49, pp. 94–102 (2012). 33. Krachler, M., J. Zheng, R. Koerner, C. Zdanowicz, D. Fisher and W. Shotyk, “Increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada,” J Environ Monit , vol. 7, No. 12, pp. 1169-1176 (2005). 34. Kuo, C. Y., J. Y. Wang, S. H. Chang and M. C. Chen, “Study of Metal Concentrations in the Environment near Diesel Transport Routes,” Atmospheric Environment, Vol. 43, No. 19, pp. 3070-3076 (2009). 35. Kuo, C. Y., C. Y. Lin, W. F. Chiang, L. C. Ko, C. W. Wu and W. L. Shang, “Variations of Chemical Compositions in Coarse Aerosols and Fine Aerosols in Two Successive Episodes,” Environmental Toxicology and Chemistry, Vol. 25, No. 8, pp. 2059-2066 (2006). 36. Liu, J. H., H. U. W, P. C. C, Y. L. LG and Y. H. H, “Concentration distributions of element in umbilical cord blood in Taiwan,” 臺灣公共衛生雜誌, Vol. 28, No. 5, pp. 420-435 (2009). 37. Miller, K. A., D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson and J. D. Kaufman, ”Long-term exposure to air pollution and incidence of cardiovascular events in women,” The New England Journal of Medicine, Vol. 356, pp. 447-458. (2007) 38. Moreno, T., X. Querol, J. Pey, M. C. Minguillon, N. Perez, A. Alastuey, R. M. Bernabe, S. Blanco, B. Cardenas, W. Eichinger, A. Salcido and W. Gibbons, “Spatial and Temporal Variations in Inhalable CuZnPb Aerosols within the Mexico City Pollution Plume,” Journal of Environmental Monitoring, Vol. 10, No. 3, pp. 370-378 (2008). 39. Okuda, T., M. Katsuno, D. Naoi, S. Nakao, S. Tanaka, K. He, Y. Ma, Y. Lei and Y. Jia, “Trends in Hazardous Trace Metal Concentrations in Aerosols Collected in Beijing, China from 2001 to 2006,” Chemosphere, Vol. 72, No. 6, pp. 917-924 (2008). 40. Ostro, B., M. Lipsett, P. Reynolds, D. Goldberg, A.Hertz and C. Garcia, “Long-term exposure to constituents of fine particulate air pollution and mortality: results from the California Teachers Study,” Environ Health Perspect, Vol. 118, No. 3, pp. 363-369 (2011). 41. Park, K. and H. D. Dam, “Characterization of Metal Aerosols in PM10 from Urban, Industrial, and Asian Dust Sources,” Environmental Monitoring and Assessment, doi: 10.1007/s10661-008 -0695-6 (2009). 42. Perrino, C., S. Canepari, E. Cardarelli, M. Catrambone and T. Sargolini, “Inorganic Constituents of Urban Air Pollution in the Lazio Region (Central Italy),” Environmental Monitoring and Assessment, Vol. 136, No. 1-3, pp. 69-86 (2008). 43. Pope C. A. III., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski and K. Ito, “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” Journa American Medical Association, Vol. 287, No. 9, pp. 1132–1141 (2002). 44. Qi, C., G. Liu, C.-L. Chou and L. Zheng, ”Environmental geochemistry of antimony in Chinese coals,” Science the Total Environment, Vol. 389, pp. 225-234 (2008). 45. Querol, X., M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, J. Pey, J. de la Rosa, A. Sanchez de la Campa, B. Artinano, P. Salvador, S. Garcia Dos Santos, R. Fernandez-Patier, S. Moreno-Grau, L. Negral, M. C. Minguillon, E. Monfort, J. I. Gil, A. Inza, L. A. Ortega, J. M. Santamaria and J. Zabalza, “Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain,” Atmospheric Environment, Vol. 41, No. 34, pp. 7219-7231 (2007). 46. Rahn, K. A., “A Graphical Technique for Determining Major Components in a Mixed Aerosol. I. Descriptive Aspects,” Atmospheric Environment, Vol. 33, No. 9, pp. 1441-1455 (1999). 47. Shan, M. H and N Shaheen, ”Seasonal behaviours in elemental composition of atmospheric aerosols collected in Islamabad, Pakistan.” Atmospheric Research, Vol. 95, pp. 210-223 (2010). 48. Shotyk, W., B. Chen, M. Krachler, Lithogenic, ”oceanic and anthropogenic sources of atmospheric Sb to a maritime blanket bog, Myrarnar, Faroe Islands,” Journal of Environmental Monitoring , Vol. 7, No. 12, pp. 1148-1154 (2005). 49. Smichowski, P., D. Gomez, C. Frazzoli and S. Caroli, “Traffic-related Elements in Airborne Particulate Matter,” Applied Spectroscopy Reviews, Vol. 43, No. 1, pp. 23-49 (2008). 50. Perrino, C., S. Canepari, E. Cardarelli, M. Catrambone and T. Sargolini, “Inorganic Constituents of Urban Air Pollution in the Lazio Region (Central Italy),” Environmental Monitoring and Assessment, Vol. 136, No. 1-3, pp. 69-86 (2008). 51. Taylor, S. R., “Abundance of Chemical Elements in the Continental Crust: a New Table,” Geochimica et Cosmochimica Acta, Vol. 28, No. 8, pp. 1273-1285 (1964). 52. Thorpe, A. and R. M. Harrison, “Sources and Properities of Non-exhaust Particulate Matter from Road Traffic: a Review,” Science of the Total Environment, Vol. 400, No. 1-3, pp. 270-282 (2008). 53. Tsai, Y. I. and M. T. Cheng, “Characterization of Chemical Species in Atmospheric Aerosols in a Metropolitan Basin,” Chemosphere, Vol. 54, No. 8, pp. 1171-1181 (2004). 54. Viana, M., M. Pandolfi, M. C. Minguillo’n, X. Querol, A. Alastuey, E. Monfort and I. Celades, “Inter-Comparison of Receptor Models for PM Source Apportionment: Case Study in an Industrial Area”, Atmospheric Environment, Vol. 42, No.16, pp. 3820-3832 (2008). 55. Wang, Y. F., K. L. Huang, C. T. Li, H. H. Mi, J. H. Luo and P. J. Tsai, “Emissions of Fuel Metals Content from a Diesel Vehicle Engine,” Atmospheric Environment, Vol. 37, No. 33, pp. 4637-4643 (2003). 56. Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, “Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan,” Journal of the Air & Waste Management Association, Vol. 55, No. 8, pp. 1236-1244 (2005). 57. Wang, X., T. Sato and B. Xing, “Size Distribution and Anthropogenic Sources Apportionment of Airborne Trace Metals in Kanazawa, Japan,” Chemosphere, Vol. 65, No. 11, pp. 2440-2448 (2006). 58. Wang, Y. F., Y. I. Tsai, H. H. Mi, H. H. Yang and Y. F. Chang, “PM10 Metal Distribution in an Industrialized City,” Bulletin of Environmental Contamination and Toxicology, Vol. 77, No. 4, pp. 624-630 (2006b). 59. Weckwerth, G, ”Verification of traffic-emitted aerosol components in the ambient air of Cologne (Germany),” Atmospheric Environment, Vol. 35, No.32, pp. 5525-5536 (2001). 60. WHO, World Health Organization, Air Quality Guidelines for Europe, 2nd Ed., WHO regional publications, Copenhagen, pp 273 (2000). 61. Xie, R., H. M. Seip, G. Wibetoe, S. Nori and C. W. McLeod, “Heavy Coal Combustion as the Dominant Source of Particulate Pollution in Taiyuan, China, Corroborated by High Concentrations of Arsenic and Selenium in PM10,” Science of the Total Environment, Vol. 370, No. 2-3, pp. 409-415 (2006). 62. Yatkin, S. and A. Bayram, “Elemental Composition and Sources of Particulate Matter in the Ambient Air of a Metropolitan City,” Atmospheric Research, Vol. 85, No. 1, pp. 126-139 (2007). 63. 曾國書,「屏東都會區粗細懸浮微粒特性之研究」,碩士論文,國立屏東科技大學環境工程與科學系,屏東(2006). 64. 林順信,「台中都會區大氣懸浮微粒中元素之時間變化與特性」,碩士論文,國立中興大學環境工程學系,台中(2009). 65. 曾嘉汝,「鹿港和二林地區大氣懸浮微粒元素組成之研究」,碩士論文,國立中興大學環境工程學系,台中(2009). 66. 蕭雅文,「台中地區大氣懸浮微粒的金屬元素特性及其可能來源分析時」,碩士論文,國立中興大學環境工程學系,台中(2010). 67. 陳勳融,「加裝濾煙氣重型柴油引擎排放微粒物化特性」,碩士論文,國立中興大學環境工程學系,台中(2011). 68. 李承龍,「都市固體廢棄物焚化爐排放PM10及PM2.5的化學組成及排放因子之研究」,碩士論文,國立中興大學環境工程學系,台中(2012). 69. 丁育頡, 「台中都會區大氣懸浮微粒與氣象因子對盛行能見度之影響」,碩士論文,國立中興大學環境工程學系,台中(2012). 70. 王曉玲,「台中都會區大氣懸浮微粒長期觀測之研究」,碩士論文,國立中興大學環境工程學系,台中(2009). 71. 江守山,「重金屬污染事件頻傳有害國人健康 - 如何檢查及治療重金屬污染」,新光醫訊第173期(2006). 72. 蔡春進,林盈禎,劉俊男,「PM2.5手動採樣和自動監測之差異與異常生成物對手動採樣測值影響之研究」,第十九屆國際氣膠科技研討會暨2012 細懸浮微粒(PM2.5)管制策略研討會(2012). 73. 林震岩,「多變量分析 : SPSS的操作與應用 = Multivariate analysis: SPSS operation and application」,智勝文化出版(2007).
本研究分析2007 ~ 2010年台中都會區四季懸浮微粒的金屬元素組成特性和濃度變化,並解析元素的可能污染來源,採樣部份主要利用雙粒徑分道採樣器採集PM2.5及PM2.5-10微粒樣本,再以微波消化法配合感應耦合電漿質譜儀分析微粒中22種元素(Al、Fe、Na、Mg、K、Ca、Sr、Ba、Ti、Mn、Co、Ni、Cu、Zn、Mo、Cd、Sb、Pb、V、Cr、As及Se)的濃度。研究結果顯示PM2.5中春、夏、秋和冬四季之元素總濃度佔PM2.5質量濃度分別為5.1 %、3.6 %、4.1 %和4.9 %,PM2.5-10則分別為15.4 %、13.1 %、13.6 %和16.2 %。由富集因子法分析PM2.5-10微粒的地殼元素為Al、Ti、Mg、Fe、K、Sr和Ca,而Cu、As、Zn、Mo、Pb、Se、Cd和Sb等人為污染源元素則主要集中於PM2.5。另外根據主成分因子分析和集群分析結果顯示台中都會區四季懸浮微粒元素來源都受地殼與揚塵、交通排放和重油燃燒影響。所有元素的季節性變化特性並非一致,PM2.5和PM2.5-10中Sb和Ni在夏季期間含量較其它季節高,然而其它元素大多皆以夏季為最低,至於Sb的來源可能來自柴油車尾氣排放、垃圾焚化或煞車墊片,而Ni可能來自重油燃燒、鋼鐵廠和垃圾焚化。採樣期間共收集10波沙塵暴,這10波沙塵暴與非事件日相比,地殼元素Al、Fe、Mg、K、Ca、Sr和Ti皆有顯著增量(P<0.05),而PM2.5中人為污染元素Cu、Zn、Pb、As和Se亦有明顯增量(P<0.05),此外有三波停留在海上時間較長其海鹽成份(Na與Mg)與經過工業區之路徑相較,有增量的趨勢。而高污染事件日期間(PM2.5日均值大於65 μg/m3),PM2.5中人為污染元素與非事件日相比各元素都沒有顯著差異,高污染的原因除了低風速之影響外,污染來源尚需進一步探討。

In this study, atmospheric particulates were collected from 2007~2010 in Taichung urban area. The purpose of this study was to investigate the seasonal variations in metallic elements of particulate matters. PM2.5 and PM2.5-10 were sampled by using dichotomous samplers. The samples were further analyzed to determine the concentration of 22 elements (Al, Fe, Na, Mg, K, Ca, Sr, Ba, Ti, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sb, Pb, V, Cr, As and Se) by using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the toatal concentration of metallic elements in PM2.5 and in PM2.5-10 were 5.1 %, 3.6 %, 4.1 %, 4.9 % and 15.4 %, 13.1 %, 13.6 %, 16.2 %, in Spring, Summer, Autumn and Winter, respectively. Based on the analysis of enrichment factors, the crustal elements were Al, Ti, Mg, Fe, K, Sr and Ca in PM2.5-10, while the anthropogenic elements such as Cu, As, Zn, Mo, Pb, Se, Cd and Sb were found mainly in PM2.5. The results of the analysis by using principal component factor analysis (PCA) and cluster analysis (CA), showed that the possible sources of pollution were mineral dust, traffic emission, oil-fired burner , in all season. Seasonal variations for all metallic elements were not the same. Especially the contents of Sb and Ni in summer were higher than those in the others seasons, however, the contests of other elements were lowest in summer. The possible sources of Sb may come from diesel vehicles, incinerator or brake pads, while the sources of Ni may be from the combustion of heavy duty oil, steel plants or incinerator. Totally 10 Asian dust storms occurred during the sampling period. The dust storms brought not only crustal elements (Al, Fe, Mg, K, Ca, Sr and Ti), which were found significantly increased (P<0.05), but also anthropogenic elements (Cu, Zn, Pb, As and Se) which were also found significantly increased (P<0.05). In those storm events, there were three Asian dust storms passing over the ocean for longer time as compared with other dust storm paths which passed over the industrial areas. As the result the contents of Na and Mg for the three dust storms increased. Our results further showed that t the contents of anthropogenic elements in PM2.5 between local PM2.5 episodes and normal days were not significantly different. The reason for the episodic events is due to the lower wind speed, however the pollution sources still need further investigation.
其他識別: U0005-0808201313102500
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.