Please use this identifier to cite or link to this item:
標題: 延長Rhodopseudomonas palustris WP3-5光合產氫操作策略及LED燈對光合產氫與PHB累積之影響
Strategies to prolong photo-hydrogen production of Rhodopseudomonas palustris WP3-5 for long-term operation and effects of LED light on photo-hydrogen production and PHB accumulation
作者: 古家宇
Ku, Chia-Yu
關鍵字: Rps. palustris WP3-5;Rps. palustris WP3-5;紫色不含硫光合菌;LED燈;purple non-sulfur bacteria;LED lamp
出版社: 環境工程學系所
引用: 王炳南(2005),厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。 呂碧芬(2009),紫色不含硫光合細菌與藍綠細菌共培養產氫可行性之評估。碩士論文。國立中興大學。台中。 林鈺傑(2008),紫色不含硫光合菌結合不同生物系統產生氫氣之研究。碩士論文。國立中興大學。台中。 洪國展(2003),光合產氫程序組合及應用。碩士論文。國立中興大學。台中。 涂良君(1999),產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。 范欣惠(2006),藍綠菌最佳產氫生理條件及其反應器操作之研究。碩士論文。國立中興大學。台中。 郁揆民(2003),紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。 郭甫序(2009),不同光源對光合細菌生長及類胡蘿蔔素含量的影響。碩士論文。國立台灣海洋大學。基隆。 陳盈孜(2011),Rhodopseudomonas palustris WP3-5細胞生長、產氫與PHB累積之關係及共培養試驗。碩士論文。國立中興大學。台中。 孫慶成、陳志宏(2011),前瞻技術與管理,第一卷第二期,1-23頁。國立中央大學。桃園。 蔡明諺(2010),結合厭氧菌、紫色不含硫光合細菌和藍綠細菌產氫之研究。碩士論文。國立中興大學。台中。 劉軒孜(2009),探討紫色不含硫光合菌Rhodopseudomonas palustris WP3-5產氫及PHB累積之競爭關係。碩士論文。國立中興大學。台中 蕭景庭(2000),產氫光合作用細菌之生理特性研究。碩士論文。國立中興大學。台中。 經濟部能源局。取自 再生資源網。取自 Carlozzi, P., Lambardi, M. (2009) Fed-batch operation for bio-H2 production by Rhodopseudomonas palustris (strain 42OL). Renewable Energy, 34(12), 2577-2584. Carlozzi, P., Sacchi, A. (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled underwater tubular photobioreactor. Journal of Biotechnolgy, 88(3), 239-249. Chen, C. Y., Lee, C. M., Chang, J. S. (2006) Feasibility study on bioreactor strategies for enhance photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. International Journal of Hydrogen Energy, 31(15), 2345-2355. Das, D., Veziroglu, T. N. (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13–28. Das, D., Veziroglu, T. N. (2008) Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046–6057. Dasgupta, C. N., Gilbert, J. J., Lindbland, P., Heidorn, T., Borgvang, S. A., Skjanes, K., Das, D. (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. International Journal of Hydrogen Energy, 35(19), 10218-10238. Ding, J., Liu, B. F., Ren, N. Q., Xing, D. F., Guo, W. Q., Xu, J. F., Xie, G. J. (2009) Hydrogen production from glucose by co-culture of Clostridium Butyricum and immobilized Rhodopseudomonas faecalis RLD-53. International Journal of Hydrogen Energy, 34(9), 3647–3652. Eroglu, E., Gunduz, U., Yucel, M., Eroglu, I. (2010) Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. International Journal of Hydrogen Energy, 35(11), 5293–5300. Fiβler, J., Kohring, G.W., Gitthorn, F. (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Applied Microbiology and Biotechnology, 44(1-2), 43-46. Gabrielyan, L., Trchounian, A. (2009) Relationship between molecular hydrogen production, proton transport and the F0F1-ATPase activity in Rhodobacter sphaeroides strains from mineral springs. International Journal of Hydrogen Energy, 34(6), 2567–2572. Gheshlaghi R. , Scharer J. M., Young M. M., Chou C. P. (2009) Metabolic pathways of clostridia for producing butanol. Biotechnology Advances 27(6), 764–781. Guo, C. L., Zhu, X., Liao, Q., Wang, Y. Z., Chen, R., Lee, D. J. (2011) Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface. Bioresource Technology, 102(18), 8507–8513. Hayward, T. BP Statistical Review of World Energy (2010). From Kars, D., Gunduz, F. (2010) Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. International Journal of Hydrogen Energy, 35(13), 6646–6656. Kapdan, I. K., Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38(5), 569-582. Kawagoshi, Y., Oki, Y., Nakano, I., Fujimoto, A., Takahashi, H. (2010) Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode. International Journal of Hydrogen Energy, 35(24), 13365-13369. Keskin, T., Hashesh, M. A., Hallenbeck, P. C. (2011) Photofermentative hydrogen production from wastes. Bioresource Technology, 102(18), 8557–8568. Khanna, S., Srivastava, A. K. (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. Kim, D. H., Son, H., Kim, M. S. (2012) Effect of substrate concentration on continuous Photo-fermentative hydrogen production from lactate using Rhodobacter sphaeroides. International Journal of Hydrogen Energy, article in press. Kim, M. S., Kim, D. H., Cha, J. (2012) Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresource Technology, article in press. Kim, M. S., Kim, D. H., Son, H. A., Ten, L. N., Lee J. K. (2011) Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. International Journal of Hydrogen Energy, 36(21), 13964-13971. Koku, H., Eroğlu, I., Gunduz, U., Yucel, M., Turker, L. (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27(11-12), 1315-1329. Li, X., Wang, Y., Zhang, S., Chu, J., Zhang, M., Huang, M. Zhuang, Y. (2011) Effect of light/dark cycle production by Rhodobacter sphaeroides ZX-5. Bioresource Technology, 102(2), 1142-1148. Li, X., Wang, Y. H., Zhang, S. L., Chu, J., Zhang, M., Huang, M. Z., Zhuang, Y. P. (2009) Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using a novel strategy- shaking and extra-light supplementation approach. International Journal of Hydrogen Energy, 34(24), 9677–9685. Liao, Q., Wang, Y. J., Wang, Y.Z., Zhu, X., Tian, X., Li, J. (2010) Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions. Bioresource Technology, 101(14), 5315–5324. Lo, Y. C., Chen, C. Y., Lee, C. M., Chang, J. S. (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. International Journal of Hydrogen Energy, 36(21), 14059–14068. Pfennig, N. (1978) Rhodocyclus purpureus gen. nov. and sp. Nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology, 28, 283-288. Satoh, H., Ramey, W. D., Koch, F. A.,Oldham, W. K., Mino, T., Matsuo, T. (1996) Anaerobic substrate uptake by the enhanced biological phosphours removal activated sludge treating real sewage. Water Science and Technology, 34(1-2), 9-16. Sudesh, K., Abe, H., Doi, Y. (2000) Synthesis, structure and properties of polyhydroxyalkanoates biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. Tian, X., Liao, Q., Liu, W., Wang, Y. Z., Zhu, X., Li, J., Wang, H. (2009) Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells. International Journal of Hydrogen Energy, 34(11), 4708–4717. Tian, X., Liao, Q., Zhu, X., Wang, Y. Z., Jun, P. Z., Wang, H. (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource Technology, 101(3), 977–983. Vignais, P. M., Billoud, B. (2007) Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. ChemReviews, 107(10), 4206-4272. Wakayama, T., Miyake, J. (2002) Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV. International Journal of Hydrogen Energy, 27(11-12), 1495-1500. Wang, Y. Z., Liao, Q., Zhu, X., Tian, X., Zhang, C. (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresource Technology, 101(11), 4034–4041. Wu, S. C., Liou, S. Z., Lee, C. M. (2012 a) Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresource Technology, 113, 44-50. Wu, S. C., Lu, P. F., Lin, Y. C., Chen, P. C., Lee, C. M. (2012 b) Bio-hydrogen production enhancement by co-cultivating Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3. International Journal of Hydrogen Energy, 37(3), 2231-2238. Yang, C. F., Lee, C. M. (2011) Enhancement of photohydrogen production using phbC deficient mutant Rhodopseudomonas palustris strain M23. Bioresource Technology, 102(9), 5418–5424. Yeager, C.M., Milliken, C. E., Bagwell, C. E., Staples, L., Berseth, P. A., Session, H. T. (2011) Evaluation of experimental conditions that influence hydrogen production among heterocystous Cyanobacteria. International Journal of Hydrogen Energy, 36(13), 7487-7499. Yilmaz, L. S., Kontur, W. S., Sanders, A. P., Sohmen, U., Donohue, T. J., Noguera, D. R. (2010) Electron partitioning during light- and nutrient-powered hydrogen production by Rhodobacter sphaeroides. BioEnergy Research. 3(1), 55-66.
氫氣被認為是一項乾淨的能源,燃燒時只產生水與熱能(121 kJ/g),且燃燒後無排放二氧化碳之問題。而以紫色不含硫光合菌於光異營條件下進行生物產氫為具潛力的方式之一,但菌株生長速率較慢,以及光利用效率不佳之情形,且操作光合反應槽時,易被生長速率較快之異營菌污染,導致產氫速率與氫氣百分比下降。因此本研究以不同之操作策略(固定化細胞、光暗週期、共培養以及批次式進流方式),希冀能改善此缺點以提升產氫效能。另一方面,目前光合產氫多以鎢絲燈為光源,其發光時伴隨著大量熱能散失,且甚少文獻使用LED燈為光源。因此本研究仍嘗試以不同LED燈為光源,觀察對產氫及累積PHB之影響。
實驗結果發現,以固定化細胞方法進行光合產氫,固定化材質之質傳速率較差且阻礙光能穿透,因此光合菌無法利用光能進行產氫。以光暗週期方式進行光合產氫時,光暗週期之組別產氫量、細胞生長速率以及基質利用速率皆較全光照組別慢,並觀察到在黑暗期有耗氫情形發生。因此光暗週期操作之方式無法有效提升氫氣產量。將Rps. palustris WP3-5與藍綠細菌Anabaena sp. CH3以體積比1:1混合進行共培養批次試驗,glutamate濃度為50及100 mg/L時,累積氫氣量分別為43.1及45.8 ml H2。將光合反應槽操作於批次式進流,可成功延長反應槽操作時間至823(乙酸為電子供給者)及871(乳酸為電子供給者)小時並持續產氫,且受其他異營菌污染時,仍有高的氫氣百分比。

Hydrogen is considered as an environmentally friendly fuel due to its carbon-neutral characteristic that only produces water and energy (121 kJ/g) after combustion. Using purple non-sulfur bacteria is a promising method to produce hydrogen biologically because this kind of bacteria can produce hydrogen gas under photo-heterotrophic condition. However, some problems associated with purple non-sulfur bacteria to produce hydrogen are still necessary to be solved, e.g., low cell growth rate, low conversion efficiency of light, and decreased hydrogen production rate and hydrogen content caused by heterotrophs which have high growth rate in photo-bioreactors. In this study, several strategies, including immobilized cell, diurnal-cycle operation, co-culture system and fed-batch mode operation, were tried to solve those problems which have been mentioned before and to enhance their hydrogen production. On the other hand, lots of studies used tungsten lamp as their light source for photo-hydrogen production, and it would waste high amount of energy when lighting on. Thus, second part of this study was to investigate the effect of LED light as a light source on photo-hydrogen production and PHB accumulation by Rhodopseudomoans palustris WP3-5.
From the results, it can be concluded that (i) Rps. palustris strain WP3-5 can not successfully produce hydrogen in immobilized cells because of the limitation in light penetration, substrate transportation and waste exclusion; (ii) strain WP3-5 generated less hydrogen and lower biomass under a diurnal cycle operation than continuous illumination with a hydrogen consumption by uptake hydrogenase; (iii) batch experiments of co-culture hydrogen production by Rps. palustris WP3-5/Anabaena sp. CH3 under mixed ratio of 1/1 exhibited a maximum hydrogen volume of 45.8 and 43.1 ml when co-culture medium contained 50 and 100 mg/L glutamate, respectively; (iv) fed-batch mode photo-bioreactor using acetate and lactate as electron donor can continuously produce hydrogen until 823 and 871 hours, respectively, even if heterotrophs existed in the reactor.
In addition, Rps. palustris WP3-5 had the highest cell growth rate, substrate consumption rate and hydrogen production rate when using tungsten lamp as a light source. Among various kinds of LED lamp for the other source, green-LED lamp had a higher hydrogen production rate than the other LED lamps. On the other hand, influence of light source on the PHB accumulation by strain WP3-5 was not observed. Otherwise, the energy demand to produce one mole of hydrogen gas by Rps. palustris WP3-5 was compared between the green-LED and tungsten lamps. The result showed that using green-LED lamp is of benefit to energy effiency by saving 95% of electric demand.
其他識別: U0005-2007201210005400
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.