Please use this identifier to cite or link to this item:
標題: 後燃燒捕獲二氧化碳再利用於藻類培養之研究
Utilization of carbon dioxide from post-combustion capture on the microalgae cultivation
作者: 曾毓翎
Tseng, Yu-Ling
關鍵字: 生物質能;Biomass energy;二氧化碳再利用;固碳率;微藻;全球暖化;Carbon dioxide reuse;Carbon fixation;Microalgae;Global warming
出版社: 環境工程學系所
引用: Amini Khoeyi, Z., Seyfabadi J. and Ramezanpour Z., Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquacult. Int. (2012)20, 41-49. Bai, H.; Wei, J.H., The CO2 Mitigation Options for the Electric Sector: A Gas Study of Taiwan. Energy Policy (1996) Vol. 3: pp.221-228. Becker, E. W., Microalgae: Biotechnology and Microbiology. The Press Syndicate of the University, (1994), Cambridge. Binaghi, L., Borghi, A. D., Lodi, A., Converti, A., and Borghi, M. D., Batch and Fed-batch Uptake of Carbon Dioxide by Spirulina platensis. Journal of Process Biochemistry, (2003) 38, p.1341-1346. Cambell, P.K.,; Beer, T. and Batten, D., Greenhouse Gas Sequestration by Algae – Energy and Greenhouse Gas Life Cycle Studies, Transport Biofuels Stream, CSIRO Energy Transformed Flagship, Melbourne, Australia (2009). Chisti, Y., Biodiesel from microalgae, Biotechnology Advances 25 (2007) 294-306. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C. and Lin, C. S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor . Bioresource Technology (2008)99:3389−3396. Chou, H.N., The Start-up of Microalgal Biofuel Reswaech in Taiwan, International Bioenergy Conference,Taipei, (2005) Nov.3-4. Claudia, S. C., Batch & Continuous Study of Chlorella vulgaris in Photo-bioreactors. School of Graduate and Postdoctoral Studies, University of Western Ontario, London, Ont. (2013). Doucha, J., Straka, F., and L´ıvansk´y, K., Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. (2005) 17, 403-412 Falkowski, P.G., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature (1997) 387(6630): 272-275. Fan, L.; Zhang, Y.; Cheng, L.; Zhang, L.; Tang, D.; Chen, H., Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor. Chem. Eng. Technol. (2007) 30, No. 8, 1094-1099. Global CCS Institute, Accelerating The Uptake Of CCS: Industrial Use Of Captured Carbon Dioxide (2011). ions/accelerating-uptake-ccs-industrial-use-captured-carbon-dioxide Hu, Q., Yair Z., and Amos R., Combined effects of light intensity, light path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. (1998)33, 165–171 IEA(International Energy Agency), Key World Energy Statistics, 2012 edition. IPCC Special Report on Carbon dioxide Capture and Storage (2005.09) Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost). . Jacob-Lopes, E., Scoparo, C.H.G., Lacerda L.M.C.F. and Franco, T.T., Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification. (2009) 48, 306-310. Kumar, A., Ergas, S., and Yuan, X., Enhanced CO2 Fixation and Biofuel Production via Microalgae: Recent Developments and Future Directions. In: Trends in Biotechnology. (2010) pp. 371–380 Lam, M.K. and Lee, K.T., Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Appl. Energy. (2012)94, 303-308. Li Y., Horsman M., Wu N., Lan C.Q., and Dubois-Calero N., Biofuels from microalgae. Biotech. Prog. (2008) 24, 815–820 Liu, Z. Y., Wang, G. C. and Zhou, B. C., Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresource Technol., (2008)99: 4717-4722. Lucı´a Pavo´ n-Meza, E., Sarma, S. S. S., and Nandini, S., Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia (2005) 546:353-360. Maeda, K., Owada, M., Kimura, N., Omata, K., and Karube, I., CO2 Fixation from the Flue Gas on Coal-fired Thermal Power Plant by Microalgae. Journal of Energy Conversion and Management, (1995) 36, p.717-720. Matsumoto, I., Watanabe, H., Abe, K., Arai, S., and Emori, Y., A putative digestive cysteine proteinase from Drosophila melanogaster is predominantly expressed in the embryonic and larval midgut. Europ. J. Biochem. (1995) 227(1-2): 582-587. (Export to RIS). Mayo, A.W., Effects of temperature and pH on the kinetic growth of unialga Chlorella vulgaris cultures containing bacteria. Water Environ. Res. (1997) 69, 64-72. Munoz, R. and Guieysse, B., Algal-bacterial processes for the treatment of hazardous contaminants: a review. (2006) Water Res. 40, 2799-2815. Ogbonna, J. C., Yada, H. and Tanaka, H., Light supply coefficient: A new engineering parameter for photobioreactor design. J. Ferment. Bioeng. (1995), 80 (4), 369-376. Ono, E. and Cuello, J. L., Selection of optimal microalgae species for CO2 sequestration. Proceedings of Second Annual Conference on Carbon Sequestration. (2003) Alexandria, VA. Pearson, P. N. and Palmer, M. R., Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science (1999) 284, 1824-1826. Prescott, L.M., Harley, J.P. and Klein, D.A., Microbiology. 6th Edn., McGraw-Hill Co., New York, London (2005). Pual, J. and Pradier, C. M., Carbon Dioxide Chemistry: Environmental Issues. The Royal Society of Chemistry, Cambridge (UK), (1994) ISBN 0-85186-634-4, 405 pp. Rao, A.B., and Rubin, E.S., A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science and Technology (2002)36, 4467–4475. Renaud, S. M., and Parry, D. L., Microalage for Use in Tropical Aquaculture 2 Effect of Salinity on Growth, Gross Chemical-composition and Fatty-acid Composition of 3 Species of Marine Microalgae. Journal of applied Phycology, (1994) 6, p.347-356. Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd; (2004). Rittmann, B. E., and McCarty, P. L., Environmental Biotechnology: Principles and Applications, McGraw-Hill, (2001). Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M., and Karbube, I., Chlorella Strains from Hot Springs Tolerant to High Temperature and High CO2. Journal of Energy Conversion and Management, (1995) 36, p.693-696. Sánchez Mirón, A., Cerón García, M.-., García Camacho, F., Molina Grima E. and Chisti, Y., Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photo-bioreactors: Studies in fed-batch culture. Enzyme Microb. Technol. (2002) 31, 1015-1023. Sirisansaneeyakul, S., S. Singhasuwan, W. Choorit, N. Phoopat, J. Garcia and Y. Chisti, Photoautotrophic Production of Lipids by Some Chlorella Strains. Mar. Biotechnol. (2011) 13, 928-941. Sobczuk, M. T., Camacho, F. G., Rubio, F. C., Fernández, F. G. A., and Grima, E. M., Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors. Journal of Biotechnology and Bioengineering, (1999) 67, p.465-475. Sobczuk, T.M., Camacho, F.G., Grima E.M. and Chisti, Y., Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering. (2006) 28, 243-250. Sorokin C, Krauss RW., The effect of light intensity on the growth rates of green algae. Plant Physiol. (1958) 33: 109-113. Tamiya, H., Mass culture of algae. Ann. Rev. Plant Physiol. (1957) 8, 309-334 Van Gerpen, J., Shanks, B., Pruszko, R., Clements, D., and Knothe, G., Biodiesel production technology, National Renewable Energy Laboratory, Golden, USA (2004). Vega-Estrada, J., Montes-Horcasitas, M.C., Domínguez-Bocanegra, A.R. and Cañizares-Villanueva, R.O., Haematococcus pluvialis cultivation in split-cylinder internalloop airlift photo-bioreactor under aeration conditions avoiding cell damage. Appl. Microbiol. Biotechnol. (2005)68, 31-35. Xu, L., Weathers, P.J., Xiong X.-. and Liu, C.-., Microalgal bioreactors: Challenges and opportunities. Engineering in Life Sciences. (2009) 9, 178-189. Yang, Y. and Gao, K., Effects of CO2 concentrations on the freshwater microalgae Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. (2003) 15, 379–389 Yeh, K., J. Chang and W. Chen, Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences. (2010) 10, 201-208. 潘忠政,整合鹼液吸收及光合作用以固定二氧化碳,碩士論文,2001年,大葉大學環境工程研究所,彰化。 李文哲,以高溫高鹼度環境培養微藻固定模擬吸收塔之吸收液中CO2 之研究,碩士論文,2006 年,國立成功大學環境工程學系,台南。 呂錫銘,淺談溫室氣體中的主角-二氧化碳,能源報導,2008年,Vol. 2:pp. 14-16。 林志生、邱聖壹,光生物反應器於微藻培養之研究與產業化的進展, 農業生技產業季刊(2010),NO.22。 林哲毅,以微藻生產生質柴油之未來發展,能源報導-封面故事三,2008年04月。 藍大鈞,藻類固定二氧化碳與藻體的利用研究,碩士論文,2001年,長庚大學化學工程研究所,桃園。 侯萬善,工業溫室氣體盤查減量宣導手冊,經濟部工業局,2002年。 經濟部能源局,我國燃料燃燒CO2排放統計與分析,2011年6月。 蕭茂修,以海洋微藻固定CO2 並作為生質能源之研究,碩士論文,2007年,國立成功大學環境工程學系,台南。 行政院環境保護署,排放量跨國比較,2013年01月 高雄市政府環境保護局,100年度高雄市生物固碳技術整合研究計畫成果發表,財團法人台灣產業服務基金會,2011年。 高宜廷,新型光生化反應器之開發與其在單細胞藻類培養上之應用,2001年,碩士論文,國立清華大學化學工程研究所,新竹。。 鍾楊聰、崔文惠、張立雪、蕭淑娟、徐歷鵬、黃璧祈等編制,生物學-上下冊,第八版,偉明圖書,2013年。 張義宏,利用本土性小球藻固定二氧化碳之技術開發,博士論文,2001年,國立台灣大學農業化學研究所,台北。 陳國修,生化工程學,合記圖書,1985年。
本研究是以微藻對後煙道氣中之二氧化碳進行固碳培養之研究,模擬煙道氣中CO2吸收條件,探討微藻培養下CO2之吸收率及微藻生產率。針對兩部分進行探討:1. 小球藻最佳生長曲線條件求取,小球藻初步培養以求取最佳生長曲線之條件。2. 以CO2培養之藻類再利用評估,本研究配合實場研究計畫,於煙道氣環境下進行微藻培養,並且求取生長曲線,探討CO2再利用於藻類之評估。將小球藻以管柱型光反應器進行批次式培養,模擬煙道氣環境,以CO2作為碳源,並且針對不同實驗參數,探討微藻之生長情形。
本研究之小球藻於pH值為6有最大藻密度與比生長速率分別為235 mg/L與0.077 d-1;而小球藻之生長於溫度條件於25 oC時,可得最大藻密度與比生長速率分別為1006 mg/L與 0.102 d-1。煙道氣環境中皆偏酸,常見之煙道氣CO2濃度約為14%,而本研究之小球藻可生長於20~30% CO2環境下,30% CO2環境下可得到最大藻密度為1070 mg/L,共可生長約76.3 ± 14 mg/L/day之生長量,單位時間內的最大生長量約為 309 mg/L/day,比生長速率約為0.17 d-1;實場操作期間,總生長量約為66.2 g/L/Day,經由實廠生長曲線對照理論生長係數,可看出生長量皆符合。本研究之藻類於對數生長期時,對於CO2之吸收可達到最高值,其生長量可達到122 g/L/Day,平均CO2利用率為93.9±2.76%。本小球藻反應器固碳率經由計算過後,以第一支管柱之固碳量為188.6噸/m3/年為最高,其小球藻之總固碳率可達到52.9 噸/m3/年。以此推估此小球藻可應用於煙道氣後端環境之培養及CO2再利用。

The purposes of this study. First, to obtain the optimal algae growth curve conditions, which contains the algal species selection and the design of the reactor, in algae species we choose to use a higher amount of oil containing and applies to higher acidity and high CO2 concentration in the flue gas environment to operate, and designed a photobioreactor for the cultivation of algae, and thus began preliminary cultured in order to obtain the best growth curve conditions. Second, to evaluate the CO2 utilization with microalages, including the effect of different CO2 concentration simulated flue gas environment microalgae culture growth curve. Biomass fuel, improve air quality and reduce greenhouse gas effect, therefore producing bio-energy has become the attention of the world.
The Chlorella sp. have the maximum density and specific growth rate were 235 mg / L and 0.077 d-1 at pH6, and grown in temperature 25 oC, we can get the maximum density and specific growth rate was 1006 mg / L and 0.102 d-1. Flue gas CO2 concentration of about 14%, and Chlorella sp. was cultivated in the 20 to 30% CO2 environment. A maximum algal density of 1070 mg/L, total growth of about 76.3 � 14 mg/L/day, the maximum growth is about 309 mg/L/day, the specific growth rate of about 0.17 d-1; Actual field operation, the algae in the logarithmic growth could reach 122 g/L/Day, and average CO2 utilization was 93.9�2.76%. The Chlorella sp. carbon fixation in the first column was 188.6 t/m3/years, and the total carbon fixation rate reached 52.9 t/m3/years. This Chlorella sp. can be used in order to estimate the flue gas back to the culture environment and recycling CO2.
其他識別: U0005-0907201312052300
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.