Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5853
標題: 微藻應用於生產生質柴油及廢水中營養鹽去除之研究
Utilization of microalgae for biodiesel production and nutrient removal from wastewater
作者: 陳佳雯
Chen, Jia-Wen
關鍵字: 微藻;microalgae;油脂;廢水處理;生質柴油;lipid;wastewater treatment;biodiesel
出版社: 環境工程學系所
引用: Ahmad, A. L., Yasin, N. H. M., Derek, C. J. C., Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production : A review. Renewable and Sustainable Energy Reviews. 15:584-593. Azov, Y., Goldman, C.(1982). Free ammonia inhibition of algal photosynthesis in intensive cultures. Applied and Environmental Microbilogy.43:735-739. Becker E. W. (1994), Microalgae: Biotechnology and Microbiology. Chapter 3: culture medium. Cambridge University Press.34 Bligh, E. G. and Dyer, W. J.(1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37(8): 911-917. Borowitzka, M. A. and Moheimani, N. R.(2010). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change. DOI 10.1007/s11027-010-9271-9. Brown, L. M.(1996). Uptake of carbon dioxide from fuel gas by microalgae. Energy Conversion and Management. 37:1363-1367. Cakmak, T., Angun, P., Demiray, Y. E., Ozkan, A. D., Elibol, Z., Tekinay, T.(2012). Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnology and Bioengineering. 109:1947-1957. Chen, M., Tang, H., Ma, H., Holland, T. C., Simon-Ng K. Y., Salley, S. O.(2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource and Technology. 102:1649-1655. Chi, Z., O''Fallon, J. V., Chen, S.(2011). Bicarbonate produced from carbon capture for algae culture. Trends in Biotechnology. 29:537-541. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances. 25:294-306. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., Lin, C. S.(2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology. 100: 833-838. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., Borghi M. D.(2009). Effect of temperature and nitrogenconcentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing. 48:1146-1151. Das, P., Aziz, S. S., Obbard, J. P. (2011). Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy. 36:2524-2528 de Morais, M. G. and Costa, J. A. V.(2007). Biofixation of carbon dioxide by Spirulina sp. And Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology. 129:439-445. Demirbas, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods : a survey. Energy Conversion and Management. 44:2093-2109. Feng, Y., Li, C., Zhang, D.(2011). Lipid production of Chlorella vulgaris cultured in artificial wastesater medium, Bioresource Technology.102:101-105. Florencio, F. F., Vega, J. M.(1983). Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardii . Planta. 158:288-293. Fowler, S. D., Brown, W. J., Warfel, J., Greenspan, P. (1979). Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. Journal of Lipid Research.28:1225-1232. Gasperi, j., Garnaud, S., Rocher, B., Moilleron, R. (2008). Priority pollutants in wastewater and combined sewer overflow. Science of The Total Environment.407:263-272. Go, S., Lee, S. J. , Jeong, G. T., Kim, S. K.(2012). Factors affecting the growth and the oil accumulation of marine microalgae Teraselmis suecica. Bioprocess and Biosystems Engineering. 35: 145-150. Greenberg A., Trussel R. R., Cleseeri L. S.(1985). Standard Methods for the Examonation of Waste Wastewater. Am. Public Health Assoc., Washington, DC. 16th ed., 1268. Gui, M. M., Lee, K. T., Bhatia S. (2008). Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 33:1643-1653. Haas, M. J. (2005). Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Processing Technology. 86:1087-1096. Harun, R., Danquah M. K., Forde G. M.(2010). Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology. 85:199-203. Hoffmann, J. P.(1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology.34-757-763. Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy. 87:38-46. Illman, A., Scragg, A. H., Shales, S. W.(2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology. 8:631-635. International Energy Agency ( IEA ) ( 2007 ).World Energy Outlook. Jiang, Y., Chen, F.(2000). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. Journal of the American Oil Chemists'' Society.77:613-617. Jones, C. S., Mayfield, S.P. (2011). Algae biofuels : versatility for the future of bioenergy. Current Opinion in Biotechnology. 23:1-6. Kumar, A., Ergas, S., Yuan, X., Sahu A., Zhang Q., Dewulf, J., Malcata, F. X., Langehove, H. V.(2010).Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology. 28(7):371-380. Li, X. F., Xu, H., Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology & Bioengineering. 98:764-771. Li, X., Hu, H. Y., Gan, K., Sun, Y. X. (2011) .Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.. Biosource Technology. 101:5494-5500. Li, Y., Horsman, M. Wang, B., Wu, N., Lan, C. Q.(2008).Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbilogy and Biotechnology. 81:629-636. Liang, Y., Sarkany, N. Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters. 31:1043-1049. Lin, Q. and Gu, N.(2012). Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga. Bioresource Technology. 112:242-247. Lin, Q. and Lin, J.(2011). Effects of nitrogen source and concentration of biomass and oil production of a Scenedesmus rubescens like microalga. Biosource Technology. 102:1615-1621. Liu, Z. Y., Wang, G. C., Zhou, B. C.(2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology. 99:4717-4722. Madigan M. T., Martinko J. M., Dunlap P. V., Clark D. P.(2008). Brock biology of microorganisms, 12th Edition.Chapter4, 591-593. Martinez, M. E., Sanchez, S., Jimenez, J. M., El Yousfi F., Munoz, L.(2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology.73:263-272. Mata, T. M., Martins, A. A., Caetano, N. S. (2010). Microalgae for biodiesel production and other application: A review. Renewable and Sustainable Energy Reviews. 14:217-232. Miron, S. A., Garcia, M. C., Gomez A. C., Camcho, F. G., Grima, E. M., Chisti, Y.(2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal. 16:287-279. Mussgnug, J. H., Klassen, V., Schluter, A., Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology. 150:51-56. Naito, K., Matsui, M., Imai, I.(2005). Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae. 4:1021-1032. Ogbonna, J. C. and Tanaka, H.(2000). Light requirement and photosynthetic cell cultivation–Development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology. 12:207-218. Pal, D., Khozin-Goldberg, I., Cohen, Z., Boussiba, S.(2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbial and Physiology. 90:1429-1441. Pittman, J. K., Dean, A. P., Osundeko, O.(2011). The potential of sustainable algal biofuel production using wastewater resource. Bioresource Technology. 102:17-25. Radakovits, R., Jinkerson, R. E., Darzins, A., Posewitz, M.(2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell. 9(4):486-501. Ratledge, C.(2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 86:807-815. Rodrigues, M. S., Ferreira, L. S., Converti, A., Carvalho, J. C. M.(2010). Fed-batch cultivation of Arthrospira ( Spirulina ) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Biosource Technology. 101:4491-4498. Ruangsomboon, S.(2012). Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Techology. 109:261-265. Sevilla, J. M. F. , Garcia, M. C. C., Miron, A. S., Belarbi, H., Garcia C. F., Molina, E. G.(2004). Pilotplant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnology Progress. 20:728-736. Solovcheko, A. E., Goldberg, I. K., Cohen S. D., Merzlyak, M. N.(2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology. 20:245-251. Stein, J. R.(1973). Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press. 488. Su, C. H., Chien, L. J., Gomes, J., Lin, Y. S., Yu, Y. K., Liou, J. S., Syu, R. J.(2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology. 23:903-908. Tam N. F. Y. and Wong, Y. S.(1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology. 57:45-50. Wang, B., Li, Y. Q., Wu, N., Lan, C. Q.(2008). CO2 bio-mitigation using microalgae. Apply Microbiology and Biotechonology. 79:707-718. Wang, B.and Lan, C. Q.(2011). Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology. 102:5639-5644. Widjaja, A., Chien, C. C., Ju, Y. H.(2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Jornal of the Taiwan Institute of Chemical Engineers. 40:13-20. Xiong, W., Gao, C., Yan, D., Wu, C., Wu, Q.(2010).Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology.101:2287–2293. Xu, H., Miao, X., Wu, Q.(2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology.126:499-507. Xu, L., Weathers, P. J., Xiong, X. R., Liu, C. Z.(2009). Microalgal bioreactors: Challenges and opportunities. Engineering in Life Sciences. 9:178-189. Xu, N., Zhang, X., Fan, X., Han, L., Zeng, C.(2001). Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. Journal of Appleid Phycology. 13: 463-469. Xu, S., Zhang, F., Wiang, W., Wu, Y., Ren, X.(2011). Progress in the study of removal from fired flue gas by microalgae. Advances in Earth Science.26:8-17. Yamano, Y. and Fukuzawa, H.(2009).Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Journal of Basic Microbiology.49:42-51. Zeng, X., Danquah, M. K., Chen, X. D., Lu, Y.(2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews. 15:3252-3260. Zhila, N. O., Kalacheva, G. S., Volova, T. G.(2005). Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz IPPAS H-252. Russian Journal of Plant Physiology. 52:357-65. 黃愛蘋,2010。利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究。國立中興大學環境工程學研究所碩士論文。 黃毓涵,2009。小球藻最適化連續式培養之研究。國立成功大學化學工程學研究所碩士論文。 葉惠青等,2010。2010年能源產業技術白皮書(第一版)。台北市:經濟部能源局。 歐陽嶠暉,2005。下水道工程學。長松文化。 賴芃劭,2008。高脂質累積潛力微藻之分離及生質柴油生長限制因子之探討。國立中興大學環境工程學研究所碩士論文。 孫鶴娟,2011。高脂質累積潛力微藻之分離及利用廢水產生生質柴油之可行性研究。
摘要: 
  在眾多替代能源發展當中,某些微藻因具有能在藻體內累積油脂的特性而被研究用來做為生質柴油的原料,且其具有生長速度快,產製之生質柴油生物分解性高,培養時不與農作物爭地等優點,因此被視為一項相當具有發展潛力的生質能源;此外,也有學者研究利用微藻去除廢水中的營養鹽,因此在本研究中,希望能結合藻株在能源發展及生物復育方面的應用,從台灣本土水樣中篩選出具有油脂累積潛力之藻株,實驗中嘗試以不同培養條件提升藻株的細胞生長及誘導其藻體內的油脂累積,並進一步以實際廢水觀察此藻株是否能利用廢水中營養鹽生長,且能同時在藻體內累積油脂做為產製生質柴油的原料。
  本實驗共測試八株綠藻,其中以Monoraphidium sp.能在藻體中累積最多油脂( 26.2% ),且能以含有銨氮之混合氮源培養基生長,因此選擇此藻株做為進一步研究的對象。於不同CO2曝氣濃度的試程中,將CO2曝氣濃度由0.03%提升至3%,Monoraphidium sp.的生長速率由0.399 day-1提升至1.613 day-1,然而再增加CO2曝氣濃度至8%及15%,生長速率則與3%時相近,實驗中並觀察到藻株之油脂累積含量在不同CO2曝氣條件下皆無明顯的變化,約為24%。於不同光照強度試驗中,Monoraphidium sp.的生長及油脂累積在光照強度為200 mE/m2 s及400 mE/m2 s條件下皆無明顯的變化情形,顯示此綠藻可能處於光飽和之狀態,因此即使提升光照也無法被有效的利用轉換成細胞儲存物質。於不同缺氮策略試程中,嘗試以不同的缺氮方式誘導藻體內的油脂累積,然而Monoraphidium sp.無論以單一階段培養缺氮策略或兩階段培養缺氮策略培養藻株,其藻體內油脂累積皆無明顯提升(21.1~25%),顯示缺氮條件非為誘導Monoraphidium sp.油脂累積的壓力條件。而將Monoraphidium sp.單獨培養於含銨氮之培養基中,發現此綠藻無法生長於僅含有銨氮為氮源之環境中,然而於含銨氮培養基中添加微量的硝酸鹽氮卻能誘導其對銨氮的利用,於硝酸鹽氮濃度為2.8 mg/L之條件下,Monoraphidium sp.能耐受的銨氮濃度甚至高達560 mg/L。最終以實際工業廢水培養Monoraphidium sp.,結果顯示此綠藻能攝取廢水中的氮磷營養鹽生長,並同時於藻細胞中累積油脂,其脂肪酸組成主要以C16:0及C18:1為主,為適合生產生質柴油之碳數範圍,由此實驗結果並證實利用微藻結合生產生質柴油及廢水處理是可行的。

  Microalgae are considered as a promising feedstock for biodiesel production to mitigate the world energy crisis and global warming because of their high growth rate, low carbon dioxide emission, and low competition to agricultural crops. In addition, some studies also indicated that microalgae can remove nutrients from wastewater. In this study, the effect of cultivation conditions (CO2 concentration, light intensity, nitrogen-limiting strategy, ammonia concentration, ammonia-N/nitrate-N ratio, and different culture mediums) on microalgae growth and lipid accumulation was investigated. Besides, a wastewater was used to evaluate the feasibility of the combination between biodiesel production and wastewater nutrient removal.
  Among all isolated strains, Monoraphidium sp. showed the highest lipid content (26.2%) and was able to grow in the medium that simultaneously contained nitrate and ammonia. Considering the aim of wastewater nutrient removal, this microalgae strain was selected for further investigation.The cultivation result showed that the growth rate of Monoraphidium sp. increased from 0.399 day-1 to 1.613 day-1 when CO2 concentration increased from 0.03% to 3%. However, the growth rate did not increase even higher when the CO2 concentration elevated to 8% or 15%, In addition, the lipid contents had no significant difference within various CO2 concentrations. On the other hand, the growth and lipid contents were almost the same under the light intensities of 200 mE/m2s and 400 mE/m2s, which may be attributed to light saturation for Monoraphidium sp.. Therefore, the biomass production and lipid accumulation were invariable even though the light intensity increased. In this study, two types of nitrogen limiting strategies were conducted to induce the lipid accumulation of Monoraphidium sp.. From the results of our experiments, neither single-stage nor two-stage cultivation enhanced the lipid content. These results revealed that the nitrogen limitation may not be a stress for Monoraphidium sp. to enhance lipid accumulation. Since ammonia was the sole nitrogen source in the experiment, Monoraphidium sp. was not well grown in the medium and started to decay. However, the cell growth and ammonia assimilation of Monoraphidium sp. were stimulated when the medium was infused with little amount of nitrate. When the nitrate concentration was 2.8 mg/L, Monoraphidium sp. can survive under an ammonia concentration of up to 560 mg/L. Finally, a wastewater was used to incubate Monoraphidium sp. and the strain can utilize nutrients from wastewater to grow with lipid accumulation. Moreover, the major fatty acids of lipid composition were 16:0 and 18:1, which are suitable for biodiesel manufacturing. According to the results from this study, Monoraphidium sp. should be an ideal candidate for simultaneous biodiesel production and wastewater nutrient removal.
URI: http://hdl.handle.net/11455/5853
其他識別: U0005-1907201209520500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.