Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5858
標題: 探討台灣含氯碳氫化合物污染場址之Dehalococcoides sp.族群數量及微生物菌相分析
Quantitative and Microbial Composition of Dehalococcoides sp. from Chloroethene-Contaminated Groundwater in Taiwan
作者: 張凱婷
Chang, Kai-Ting
關鍵字: 專一性引子對;Dehalococcoides sp.;即時定量聚合酶鏈鎖反應;微生物菌相;primer;Real-time PCR;species’s population
出版社: 環境工程學系所
引用: 土壤及地下水污染整治法 (2010). 李昱良 (2005) Stenotrophomonas Maltophilia多重抗藥性的研究. 周純芬 (2005) 生物資訊輕輕鬆鬆學 合記圖書出版社. 莫展民, M. Zhang, and Warner, S.D. (2005) 滲透性反應牆在地下水處理上的應用” 台灣土壤及地下水環境保護協會簡訊,第 15 期,第 7-10 頁。. 盧至人 (1997) 地下水的污染整治. 環保署 (2013) 地下水污染管制標準. Adrian, L., Szewzyk, U., Wecke, J., and Gorisch, H. (2000) Bacterial Dehalorespiration with Chlorinated Benzenes. Nature 408: 580-583. Adrian, L., Hansen, S.K., Fung, J.M., Gorisch, H., and Zinder, S.H. (2007) Growth of Dehalococcoides Strains with Chlorophenols as Electron Acceptors. Anderson, R. T., Rooney-Varga, J. N., G., V., C., and Lovley, D.R. (1998) Anaerobic Benzene Oxidation in the Fe(Iii) Reduction Zone of Petroleum-Contaminated Aquifers. Aulenta, F., Majone, M., and Tandoi, V. (2006) Enhanced Anaerobic Bioremediation of Chlorinated Solvents: Environmental Factors Influencing Microbial Activity and Their Relevance under Field Conditions. Journal of Chemical Technology & Biotechnology 81: 1463-1474. B. M. Rosner, P.L.M., and A. M. Spormann (2003) In Vitro Studies on Reductive Vinyl Chloride Dehalogenation by an Anaerobic Mixed Culture. Bae, S., and Wuertz, S. (2009) Discrimination of Viable and Dead Fecal Bacteroidales Bacteria by Quantitative Pcr with Propidium Monoazide. Appl Environ Microbiol 75: 2940-2944. Baj, J. (2000) Taxonomy of the Genus Paracoccus. Beeman, R.E., and Bleckmann, C.A. (2002) Sequential Anaerobicaerobic Treatment of an Aquifer Contaminated by Halogenated Organics: Field Results. Journal of Contamination Hydrology. Behrens, S., Azizian, M.F., McMurdie, P.J., Sabalowsky, A., Dolan, M.E., Semprini, L., and Spormann, A.M. (2008) Monitoring Abundance and Expression of "Dehalococcoides" Species Chloroethene-Reductive Dehalogenases in a Tetrachloroethene-Dechlorinating Flow Column. Appl Environ Microbiol 74: 5695-5703. Beja, O., Suzuki, M.T., Heidelberg, J.F., Nelson, W.C., Preston, C.M., Hamada, T., Eisen, J.A., Fraser, C.M., and DeLong, E.F. (2002) Unsuspected Diversity among Marine Aerobic Anoxygenic Phototrophs. Nature 415: 630-633. Bruce, R.A., Achenbach, L.A., and Coates, J.D. (1999) Reduction of (Per)Chlorate by a Novel Organism Isolated from Paper Mill Waste. Environ Microbiol 1: 319-329. Cawthorn, D.M., and Witthuhn, R.C. (2008) Selective Pcr Detection of Viable Enterobacter Sakazakii Cells Utilizing Propidium Monoazide or Ethidium Bromide Monoazide. Journal of Applied Microbiology 105: 1178-1185. Cheng, D., and He, J. (2009) Isolation and Characterization of "Dehalococcoides" Sp. Strain Mb, Which Dechlorinates Tetrachloroethene to Trans-1,2-Dichloroethene. Appl Environ Microbiol 75: 5910-5918. Coates, J.D., Michaelidou, U., Bruce, R.A., O’Connor, S.M., Crespi, J.N., and Achenbach, L.A. (1999) Ubiquity and Diversity of Dissimilatory (Per)Chlorate-Reducing Bacteria. Appl Environ Microbiol 65: 5234-5241. Council, T.I.T.R., and Team, B.o.D. (2005) Overview of in Situ Bioremediatioon of Chlorinated Ethene Dnapl Sources Zones. Cupples, A.M. (2008) Real-Time Pcr Quantification of Dehalococcoides Populations: Methods and Applications. Journal of Microbiological Methods 72: 1-11. Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2003) Growth of a Dehalococcoides-Like Microorganism on Vinyl Chloride and Cis-Dichloroethene as Electron Acceptors as Determined by Competitive Pcr. Appl Environ Microbiol 69: 953-959. de la Fuente, G., Perestelo, F., Rodriguez-Perez, A., and Falcon, M.A. (1991) Oxidation of Aromatic Aldehydes by Serratia Marcescens. Appl Environ Microbiol 57: 1275-1276. Di Battista, A., Verdini, R., Rossetti, S., Pietrangeli, B., Majone, M., and Aulenta, F. (2010) Card-Fish Analysis of a Tce-Dechlorinating Biocathode Operated at Different Set Potentials. New Biotechnology. Dorigoa, U., Volatierb, L., and Humbert, J.-F. (2005) Molecular Approaches to the Assessment of Biodiversity in Aquatic Microbial Communities. Water Res 39: 2207-2218. Duhamel, M., and Edwards, E.A. (2006) Microbial Composition of Chlorinated Ethene-Degrading Cultures Dominated by Dehalococcoides. FEMS Microbiol Ecol 58: 538-549. El Fantroussi, S., and Agathos, S.N. (2005) Is Bioaugmentation a Feasible Strategy for Pollutant Removal and Site Remediation? Current Opinion in Microbiology 8: 268-275. Ellis, D.E., E. J. Lutz, J.M.O., R. J. Buchanan, J., M. D. Lee, C.L., Bartlett, M.R.H., and DeWeerd., K.A. (2000) Bioaugmentation for Accelerated in Situ Anaerobic Bioremediation. EPA (1998) Permeable Eactive Barriertechnologies for Contaminant Remediationunited. Erik A. Petrovskis, W.R.A.a.C.B.W. (2013) Microbobial Monitoring During Bioaugmentation with Dehalococcoides. Ferris, M.J., and Ward, D.M. (1997) Seasonal Distributions of Dominant 16s Rrna-Defined Populations in a Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381. Fischer, A.J., Rowan, E.A., and Spalding, R.F. (1987) Vocs in Ground Water Influenced by Large Scale Withdrawals. Ground Water 25: 407-414. Flenka, G., Stefani, P., Wagner, M., Smulders, F.J.M., Mozina, S.S., and Hein, I. (2007) Insufficient Differentiation of Live and Dead Campylobacter Jejuni and Listeria Monocytogenes Cells by Ethidium Monoazide (Ema) Compromises Ema/Real-Time Pcr. Freedman, D.L., and Gossett, J.M. (1989) Biological Reductive Dechlorination of Tetrachloroethylene and Biological Reductive Dechlorination of Tetrachloroethylene And. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. (2001) An Overview of Real-Time Quantitative Pcr: Applications to Quantify Cytokine Gene Expression. Methods 25: 386-401. Hallin, S., and Lindgren, P.-E. (1999) Pcr Detection of Genes Encoding Nitrite Reductase in Denitrifying Bacteria. Appl. Environ. Microbiol. 65: 1652-1657. Han, T.-S., Sasaki, S., Yano, K., Ikebukuro, K., Kitayama, A., Nagamune, T., and Karube, I. (2002) Flow Injection Microbial Trichloroethylene Sensor. Talanta 57: 271-276. He, J., Ritalahti, K.M., Aiello, M.R., and Loffler, F.E. (2003a) Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species. Appl Environ Microbiol 69: 996-1003. He, J., Holmes, V.F., Lee, P.K.H., and Alvarez-Cohen, L. (2007) Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium. Appl Environ Microbiol 73: 2847-2853. He, J., Ritalahti, K.M., Yang, K.-L., Koenigsberg, S.S., and Loffler, F.E. (2003b) Detoxification of Vinyl Chloride to Ethene Coupled to Growth of an Anaerobic Bacterium. Nature 424: 62-65. He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M., and Loffler, F.E. (2005) Isolation and Characterization of Dehalococcoides Sp. Strain Fl2, a Trichloroethene (Tce)- and 1,2-Dichloroethene-Respiring Anaerobe. Environ Microbiol 7: 1442-1450. Heimann, A.C., Batstone, D.J., and Jakobsen, R. (2006) Methanosarcina Spp. Drive Vinyl Chloride Dechlorination Via Interspecies Hydrogen Transfer. Appl Environ Microbiol 72: 2942-2949. Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E., and Ebersole, R.C. (2002) Molecular Analysis of Dehalococcoides 16s Ribosomal DNA from Chloroethene-Contaminated Sites Throughout North America and Europe. Appl Environ Microbiol 68: 485-495. Hojae Shim, Byungho Hwang, Sang-Seob Lee, and Sung-Ho Kong (2005) Kinetics of Btex Biodegradation by a Coculture of Pseudomonas Putida and Kinetics of Btex Biodegradation by a Coculture of Pseudomonas Putida And. Hubert Siller, A., F., Rainey, Erko Stackebrandt, and Winter, J. (1996) Isolation and Characterization of a New Gram-Negative, Acetone-Degrading, Nitrate-Reducing Bacterium from Soil, Paracoccus Solventivorans Sp. Nov. Ineˆ s, A., Tenreiro, T., Tenreiro, and R.&Mendes-Faia, A. (2008) Wine Lactic Acid Bacteria - Part I. Iwamoto, T., and Nasu, M. (2001) Current Bioremediation Practice and Perspective. Journal of Bioscience and Bioengineering 92: 1-8. John D. Coates, Debra J. Ellis, Catherine V. Gaw, and Lovley, a.D.R. (1999) Geothrix Fermentans Gen. Nov., Sp. Nov., a Novel Fe(Iii)-Reducing Bacterium from a Hydrocarbon-Contaminated Aquifer. Kastner, M. (1991) Reductive Dechlorination of Tri- and Tetrachloroethylenes Depends on Transition from Aerobic to Anaerobic Conditions. Appl Environ Microbiol 57: 2039-2046. Kittelmann, S., and Friedrich, M.W. (2008) Identification of Novel Perchloroethene-Respiring Microorganisms in Anoxic River Sediment by Rna-Based Stable Isotope Probing. Environ Microbiol 10: 31-46. Kotik, M., Davidova, A., Vořiškova, J., and Baldrian, P. (2013) Bacterial Communities in Tetrachloroethene-Polluted Groundwaters: A Case Study. Science of The Total Environment 454–455: 517-527. Krumholz, L.R. (1997) Desulfuromonas Chloroethenica Sp. Nov. Uses Tetrachloroethylene and Trichloroethylene as Electron Acceptors. International Journal of Systematic Bacteriology 47: 1262-1263. Kube, M., Beck, A., Zinder, S.H., Kuhl, H., Reinhardt, R., and Adrian, L. (2005) Genome Sequence of the Chlorinated Compound-Respiring Bacterium Dehalococcoides Species Strain Cbdb1. Nat Biotechnol 23: 1269-1273. Lebro’n CA, Petrovskis EA, and Lo‥ffler FE, H.K. (2011) Final Report: Application of Nucleic Acidbased Tools Formonitoringmonitored Natural Attenuation (Mna), Biostimulation and Bioaugmentation at Chlorinated Solvent Sites. Lee, J.-L., and Levin, R.E. (2007) Quantification of Total Viable Bacteria on Fish Fillets by Using Ethidium Bromide Monoazide Real-Time Polymerase Chain Reaction. International Journal of Food Microbiology 118: 312-317. Lee, P.K.H., Cheng, D., Hu, P., West, K.A., Dick, G.J., Brodie, E.L., Andersen, G.L., Zinder, S.H., He, J., and Alvarez-Cohen, L. (2011) Comparative Genomics of Two Newly Isolated Dehalococcoides Strains and an Enrichment Using a Genus Microarray. ISME J 5: 1014-1024. Li, X.D., and Schwartz, F.W. (2004) Dnapl Remediation with in Situ Chemical Oxidation Using Potassium Permanganate: Ii. Increasing Removal Efficiency by Dissolving Mn Oxide Precipitates. Journal of Contaminant Hydrology 68: 269-287. Liu, G., Amemiya, T., and Itoh, K. (2008) Two-Dimensional DNA Gel Electrophoresis Mapping: A Novel Approach to Diversity Analysis of Bacterial Communities in Environmental Soil. J Biosci Bioeng 105: 127-133. Liu, W.T., Marsh, T.L., Cheng, H., and Forney, L.J. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16s Rrna. Appl. Environ. Microbiol. 63: 4516-4522. Lu, X., Wilson, J.T., and Kampbell, D.H. (2006) Relationship between Dehalococcoides DNA in Ground Water and Rates of Reductive Dechlorination at Field Scale. Water Res 40: 3131-3140. Muller, J.A., Rosner, B.M., von Abendroth, G., Meshulam-Simon, G., McCarty, P.L., and Spormann, A.M. (2004) Molecular Identification of the Catabolic Vinyl Chloride Reductase from Dehalococcoides Sp. Strain Vs and Its Environmental Distribution. Appl Environ Microbiol 70: 4880-4888. Mark D. Mikesell, Jerome J. Kukor, and Olsen, R.H. (1994) Metabolic Diversity of Aromatic Hydrocarbon-Degrading Bacteria from a Petroleum-Contaminated Aquifer. Mattes, T.E., Alexander, A.K., and Coleman, N.V. (2010) Aerobic Biodegradation of the Chloroethenes: Pathways, Enzymes, Ecology, and Evolution. FEMS Microbiol Rev 34: 445-475. Maymo-Gatell, X., Anguish, T., and Zinder, S.H. (1999) Reductive Dechlorination of Chlorinated Ethenes and 1,2-Dichloroethane by “Dehalococcoides Ethenogenes” 195. Appl Environ Microbiol 65: 3108-3113. Maymo-Gatell, X., Tandoi, V., Gossett, J.M., and Zinder, S.H. (1995) Characterization of an H2-Utilizing Enrichment Culture That Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis. Appl Environ Microbiol 61: 3928-3933. Maymo-Gatell, X. (1997) Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene. Science 276: 1568-1571. McCARTY, E.J.B.A.P.L. (1983) Transformations of 1- and 2-Carbon Halogenated Aliphatic Organic Compounds under Methanogenic Conditions. McCarty, P.L. (1997) Breathing with Chlorinated Solvents. Science 276: 1521-1522. McCarty, P.L.S., L. (1994) Ground-Water Treatment for Chlorinated Solvents.: Boca Raton, FL : Lewis Publishers. McDonald, I.R., and Murrell, J.C. (1997) The Methanol Dehydrogenase Structural Gene Mxaf and Its Use as a Functional Gene Probe for Methanotrophs and Methylotrophs. Appl. Environ. Microbiol. 63: 3218-3224. McInerney, M.J., and Bryant, M.P. (1981) Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina Barkeri and Desulfovibrio Species and Effect of H2 on Acetate Degradation. Appl Environ Microbiol 41: 346-354. Michael Bunge, L.A., Angelika Kraus, Matthias Opel, Wilhelm G. Lorenz, Jan R. Andreesen, Helmut Gorisch, Ute Lechner (2003) Reductive Dehalogenation of Chlorinated Dioxins by an Anaerobic Bacterium. Michaelidou, U., Achenbach, L., and Coates, J. (2000) Isolation and Characterization of Two Novel (Per)Chlorate-Reducing Bacteria from Swine Waste Lagoons. In Perchlorate in the Environment. Urbansky, E. (ed): Springer US, pp. 271-283. Nocker, A., and Camper, A.K. (2006) Selective Removal of DNA from Dead Cells of Mixed Bacterial Communities by Use of Ethidium Monoazide. Appl Environ Microbiol 72: 1997-2004. Nocker, A., Cheung, C.-Y., and Camper, A.K. (2006) Comparison of Propidium Monoazide with Ethidium Monoazide for Differentiation of Live Vs. Dead Bacteria by Selective Removal of DNA from Dead Cells. Journal of Microbiological Methods 67: 310-320. Nocker, A., Sossa, K.E., and Camper, A.K. (2007) Molecular Monitoring of Disinfection Efficacy Using Propidium Monoazide in Combination with Quantitative Pcr. Journal of Microbiological Methods 70: 252-260. Nocker, A., Mazza, A., Masson, L., Camper, A.K., and Brousseau, R. (2009) Selective Detection of Live Bacteria Combining Propidium Monoazide Sample Treatment with Microarray Technology. Journal of Microbiological Methods 76: 253-261. Odom, J.M., J. Tabinowski, M.D. Lee, and Fathepure., B.Z. (1994) Anaerobic Biodegradation of Chlorinated Solvents: Comparative Laboratory Study of Aquifer Microcosms. In Bioremediation of Chlorinated Solvents. Onuki, M., Satoh, H., and Mino, T. (2002) Analysis of Microbial Community That Performs Enhanced Biological Phosphorus Removal in Activated Sludge Fed with Acetate. Pan, Y., and Breidt, F. (2007) Enumeration of Viable Listeria Monocytogenes Cells by Real-Time Pcr with Propidium Monoazide and Ethidium Monoazide in the Presence of Dead Cells. Appl Environ Microbiol 73: 8028-8031. Parales, R.E., Ditty, J.L., and Harwood, C.S. (2000) Toluene-Degrading Bacteria Are Chemotactic Towards the Environmental Pollutants Benzene, Toluene, and Trichloroethylene. Appl Environ Microbiol 66: 4098-4104. Persing, D.H., Tenover, F.C., Versalovic, J., YiWei, T., Unger, E.R., Relman, D.A., and White, T.J. (2011) Molecular Microbiology : Diagnostic Principles and Practice (2nd Edition). Washington, DC, USA: ASM Press. Ranchou-Peyruse, A., Herbert, R., Caumette, P., and Guyoneaud, R. (2006) Comparison of Cultivation-Dependent and Molecular Methods for Studying the Diversity of Anoxygenic Purple Phototrophs in Sediments of an Eutrophic Brackish Lagoon. Environmental microbiology 8: 1590-1599. Rawsthorne, H., and Phister, T.G. (2009) Detection of Viable Zygosaccharomyces Bailii in Fruit Juices Using Ethidium Monoazide Bromide and Real-Time Pcr. International Journal of Food Microbiology 131: 246-250. Roche (1999) Quick Reference Procedure. In Lightcyclerr Faststart DNA Masterplus Sybr Green I. Germany: Roche. Rotthauwe, J., Witzel, K., and Liesack, W. (1997) The Ammonia Monooxygenase Structural Gene Amoa as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammoniaoxidizing Populations Appl, Environ. Microbiol. 63: 4704-4712. Rudi, K., Moen, B., Dromtorp, S.M., and Holck, A.L. (2005a) Use of Ethidium Monoazide and Pcr in Combination for Quantification of Viable and Dead Cells in Complex Samples. Appl Environ Microbiol 71: 1018-1024. Rudi, K., Naterstad, K., Dromtorp, S.M., and Holo, H. (2005b) Detection of Viable and Dead Listeria Monocytogenes on Gouda-Like Cheeses by Real-Time Pcr. Letters in Applied Microbiology 40: 301-306. Ruth E. Richardson, Vishvesh K. Bhupathiraju, Donald L. Song, Tanuja A. Goulet, A., and Alvarez-Cohen, L. (2002) Phylogenetic Characterization of Microbial Communities That Reductively Dechlorinate Tce Based Upon a Combination of Molecular Bination of Molecular. Satinder K. Brar, M. Verma, R. Y. Surampalli, K. Misra, R. D. Tyag, N. Meunier, and Blais7, J.F. (2006) Bioremediation of Hazardous Wastes—a Review. Scheutz, C., Durant, N.d., Dennis, P., Hansen, M.H., Jorgensen, T., Jakobsen, R., Cox, E.e., and Bjerg, P.L. (2008) Concurrent Ethene Generation and Growth of Dehalococcoides Containing Vinyl Chloride Reductive Dehalogenase Genes During an Enhanced Reductive Dechlorination Field Demonstration. Environmental Science & Technology 42: 9302-9309. Schink, B. (1997) Energetics of Syntrophic Cooperation in Methanogenic Degradation. Microbiology and Molecular Biology Reviews 61: 262-280. Scott G. Huling, Saebom Ko, and Pivetz, a.B. (2011) Groundwater Sampling at Isco Sites:Binary Mixtures of Volatile Organic Compounds and Persulfate. Silver, S. (1996) Bacterial Resistances to Toxic Metal Ions - a Review. Gene 179: 9-19. Smidt, H., Akkermans, A.D.L., van der Oost, J., and de Vos, W.M. (2000) Halorespiring Bacteria–Molecular Characterization and Detection. Enzyme and Microbial Technology 27: 812-820. Soejima, T., Schlitt-Dittrich, F., and Yoshida, S.-i. (2011) Rapid Detection of Viable Bacteria by Nested Polymerase Chain Reaction Via Long DNA Amplification after Ethidium Monoazide Treatment. Analytical Biochemistry 418: 286-294. Sung, Y., Ritalahti, K.M., Apkarian, R.P., and Loffler, F.E. (2006) Quantitative Pcr Confirms Purity of Strain Gt, a Novel Trichloroethene-to-Ethene-Respiring Dehalococcoides Isolate. Appl Environ Microbiol 72: 1980-1987. Sung, Y., Ritalahti, K.M., Sanford, R.A., Urbance, J.W., Flynn, S.J., Tiedje, J.M., and Loffler, F.E. (2003) Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Description as Desulfuromonas Michiganensis Sp. Nov. Appl Environ Microbiol 69: 2964-2974. Thiruvenkatachari, R., Vigneswaran, S., and Naidu, R. (2008) Permeable Reactive Barrier for Groundwater Remediation. Journal of Industrial and Engineering Chemistry 14: 145-156. Thomas D. DiStefano, James M. Gossett, and Zinder, S.H. (1991) Reductive Dechlorination of High Concentrations of Tetrachloroethene to Ethene by an Anaerobic Enrichment Culture in the Absence of Methanogenesis. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, A.D.G. (1997) The Clustal_X Windows Interface_ Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Tiehm, A., and Schmidt, K.R. (2011) Sequential Anaerobic/Aerobic Biodegradation of Chloroethenes—Aspects of Field Application. Current Opinion in Biotechnology 22: 415-421. Timothy M. Vogel, and McCARTY, P.L. (1985) Biotransformation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Conditions. Trevors, J.T. (2011) Viable but Non-Culturable (Vbnc) Bacteria: Gene Expression in Planktonic and Biofilm Cells. J Microbiol Methods 86: 266-273. Tyler, E. (2009) Use of Dehalococcoides to Bioremediate Groundwater Contaminated with Chlorinated Solvents. Valter Tandol, Thomas D. DiStefano, Patrick A. Bowser, James M. Gossett, and Zinder, S.H. (1994) Reductive Dehalogenation of Chlorinated Ethenes and Halogenated Ethanes by a High-Rate Anaerobic Enrichment Culture. van der Zaan, B., Hannes, F., Hoekstra, N., Rijnaarts, H., de Vos, W.M., Smidt, H., and Gerritse, J. (2010) Correlation of Dehalococcoides 16s Rrna and Chloroethene-Reductive Dehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater. Appl Environ Microbiol 76: 843-850. van Frankenhuyzen, J.K., Trevors, J.T., Lee, H., Flemming, C.A., and Habash, M.B. (2011) Molecular Pathogen Detection in Biosolids with a Focus on Quantitative Pcr Using Propidium Monoazide for Viable Cell Enumeration. Journal of Microbiological Methods 87: 263-272. Varma, M., Field, R., Stinson, M., Rukovets, B., Wymer, L., and Haugland, R. (2009) Quantitative Real-Time Pcr Analysis of Total and Propidium Monoazide-Resistant Fecal Indicator Bacteria in Wastewater. Water Res 43: 4790-4801. Vesper, S., McKinstry, C., Hartmann, C., Neace, M., Yoder, S., and Vesper, A. (2008) Quantifying Fungal Viability in Air and Water Samples Using Quantitative Pcr after Treatment with Propidium Monoazide (Pma). Journal of Microbiological Methods 72: 180-184. Vogel, T.M., Criddle, C.S., and McCarty, P.L. (1987) Transformation of Halogenated Aliphatic Compounds. Wagner, A.O., Malin, C., Knapp, B.A., and Illmer, P. (2008) Removal of Free Extracellular DNA from Environmental Samples by Ethidium Monoazide and Propidium Monoazide. Appl Environ Microbiol 74: 2537-2539. Wang, S., and Levin, R.E. (2006) Discrimination of Viable Vibrio Vulnificus Cells from Dead Cells in Real-Time Pcr. Journal of Microbiological Methods 64: 1-8. Waring, M.J. (1965) Complex Formation between Ethidium Bromide and Nucleic Acids. Journal of Molecular Biology 13: 269-282. Wilson, L., and Bouwer, E. (1997) Biodegradation of Aromatic Compounds under Mixed Oxygen/Denitrifying Conditions: A Review. Woese, C.R. (1978) Bacterial Evolution. Microbilogy Review 51: 211-271. Yang, Y., and McCarty, P.L. (1998) Competition for Hydrogen within a Chlorinated Solvent Dehalogenating Anaerobic Mixed Culture. Environmental Science & Technology 32: 3591-3597. Yoshida, N., Takahashi, N., and Hiraishi, A. (2005) Phylogenetic Characterization of a Polychlorinated-Dioxin- Dechlorinating Microbial Community by Use of Microcosm Studies. Appl Environ Microbiol 71: 4325-4334. Zhanbei Liang, Rhae A. Drijber, Donald J. Lee, Ismail M. Dwiekat, and Harris, S.D. (2008) A Dgge-Cloning Method to Characterize Arbuscular Mycorrhizal Community Structure in Soil.
摘要: 
含氯碳氫化合物大量使用於乾洗業、脫脂劑、金屬清洗業、殺蟲劑等。當污染物使用不當而外洩土壤與地下水時,將會造成嚴重的環境威脅。台灣於民國89年2月2日公告施行「土壤及地下水污染整治法」,對於土壤及地下水之污染防治、管制及整治復育有詳細規定。根據文獻指出以生物復育整治土壤及地下水,對於成本及環境友善方面為較佳處理方式。
本研究將利用分子生物技術台灣受含氯碳氫化合物污染場址中可能存在Dehalococcoides sp.族群進行分析。先利用基因資料庫進行Dehalococcoides sp.專一性引子對設計比對,以設計出可以應用於定性分析現地整治場址之Dehalococcoides sp.微生物族群的方法。另一方面也嘗試建立適用於定量分析Dehalococcoides sp.微生物的專一性引子對。確定使用引子設計之後,使用PCR-DGGE討論Dehalococcoides sp.族群種類、以及使用Real-time PCR技術分析現地族群數量,利評估其現地降解污染物之情形。本研究並同時監測與Dehalococcoides sp.共存之其他微生物菌相分析,探討現地復育中,微生物之間交互能力、互動關係。以期望能做為快速掌握現地微生物變動,進而協助加速整治效果之依據。
本研究樣本蒐集台灣現地污染場址共14個樣本進行分析,儘管污染物質相同,因地區條件與場指環境不同,發現存在不同地點之微生物族群仍有差異。由中部地區某目前進行現地整治場址之地下水樣本中,發現現場Dehalococcoides sp.族群有strain ANAS2、strain 195、strain VS和strain MB等。而中部另一未整治現地亦存在strain 195。顯示只要有污染源、適當基質或電子接受者,該菌株可能不需經由生物復育方式,即會出現於自然地下水體。另外與脫鹵球菌共存之真細菌包括有Alcaligenes faecalis、Rubellimicrobium、Paracoccus alcaliphilus、Serratia marcescens、 Lactobacillus sp.、Lactobacillus farraginis、Olsenella sp.及Desulfovibrio sp.等。
本研究建立之分子生物定性及定量方式,確實能即時掌握現地環境變動,將可以應用於提高生物整治效果。

Chlorinated solvents are widely used in dry cleaning processes, degreasing agent, semiconductor manufacture, and insecticides. Improper discharge of contaminants is likely to result in critical environmental damage. In year 2000, the Taiwanese government enforced the Soil and Groundwater Remediation Act, issuing detailed regulations on the prevention, control, and treatment of soil and groundwater. Bioremediation is commonly deemed as a cost-effective way in dealig with the issues of environmental remediation.
Molecular biology is applied in this study to analyze the Dehalococcoides sp. that exists in the chlorinated solvents found in contaminated sites. Gene database is used in the pairwise of Dehalococoides sp. primaers, which can be applied to target the Dehalococcoides sp. at a specific site. It can also be used to estimate the species’s quantity. The analytical results are further processed with the use of PCR-DGGE and Real-time PCR to obtain the data with regard to the species’s population and quantity. The species can also be used to assess the degradation of chlorinated solvents at the sites.
The study also monitored the co-culture between Dehalococcoides sp. and other microorganisms to discuss the biological interactions during the course of bioremediation. The growth of Dehalococcoides sp. serves the role of the benchmark on which the treatment is based.
Samples from fourteen sites are chosen in the study for investigation. The microorganisms species found in different sites yielded different analytical results, despite the identical contaminants. The subclasses of Dehalococcoides sp., including strain ANAS2, 195, VS, and MB, were found in some sites in the middle region of Taiwan. Among the subclasses, strain 195 was also found at another untreated site in the same area, which indicates that with the existence of contaminants, substrate, and electron acceptors, Dehalococcoides sp. is likely to survive without any bioremediation.
Other microorganisms that can coexist with Dehalococcoides sp. include Alcaligenes faecalis、Rubellimicrobium、Paracoccus alcaliphilus、Serratia marcescens、 Lactobacillus sp.、Lactobacillus farraginis、Olsenella sp.and Desulfovibrio sp..
The molecular biology methods established in the study is confirmed to be able to track down in-situ changes and enhance the effects of biological treatment.
URI: http://hdl.handle.net/11455/5858
其他識別: U0005-1706201318082400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.