Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5865
標題: 模擬受二氯乙烯污染之地下水結合厭氧脫氯與好氧共代謝之生物復育研究
Study of Bioremediation of Stimulated Groundwater Contaminated by Dichloroethylene with Anaerobic Dechlorination Combined with Aerobic Co-metabolism treatment
作者: 曾瀚緯
Tseng, Han-Wei
關鍵字: 二氯乙烯;dichloroethene;管柱;甲烷;生物刺激;共代謝;column;methane;biostimulation;co-metabolism
出版社: 環境工程學系所
引用: 行政院環保署(2011)“毒災應變諮詢中心之防救手冊”。 行政院勞委會(2009)化學品全球調合制度(GHS)。 行政院環保署(2006)油品類儲槽系統污染範圍調查作業指引。 行政院環保署(2001)土壤及地下水污染整治法之地下水污染管制標準。 王有盛(2003)“促進厭氧生物處理四氯乙烯代謝方式之探討”碩士論文,國立中興大學環境工程研究所,台中。 江美幸(1995)“甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較” 碩士論文,國立中興大學環境工程研究所,台中。 李孟熹(2010)“以生物添加法降解模擬含水層中四氯乙烯之砂箱試驗研究” 碩士論文,國立中興大學環境工程研究所,台中。 呂淑慧(1999)“酚分解菌共代謝三氯乙烯隻連續流試驗”碩士論文,國立中興大學環境工程研究所,台中。 官之嫻(1998)“苯環類分解菌共代謝三氯乙烯”碩士論文,國立中興大學環境工程研究所,台中。 洪詩怡(2011)“飽和含水層中四氯乙烯厭氧分解之菌相分佈研究:管住試驗” 碩士論文,國立中興大學環境工程研究所,台中。 范主熙(2005)“氯乙烯生物處理條件探討及應用分子生物技術對脫氯菌群的分析” 碩士論文,東吳大學微生物學系研究所,台北。 郭家綸(2002)”纖維床生物反應器去除甲苯與三氯乙烯之研究”博士論文,國立中央大學環境工程研究所,中壢。 陳智彥(2006)“生物固體物與奈米零價鐵對受三氯乙烯污染土壤及地下水中厭氧生物分解之研究” 碩士論文,國立中興大學環境工程研究所,台中。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程研究所,台中。 劉詔文 (2004)“生物反應牆袪除地下水中三氯乙烯和氯乙烯之研究”,中央大 學環境工程研究所,桃園 盧至人(1997)“地下水的污染整治” 國立編譯館,台北。 盧至人(2002)“現地生物復育技術” 台灣土壤及地下水環境保護協會簡訊,第 5 期,第 79-86 頁。 簡華逸(2010)“應用現地生物整治技術處理受三氯乙烯污染之地下水” 博士論文,國立中山大學環境工程研究所,高雄。 Abe, Y., R. Aravena, J. Zopfi, O. Shouakar-Stash, E. Cox, J. D. Roberts, and D. Hunkeler(2009)“ Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene” Environmental Science and Technology 43: 101-107 Arcangeli, J. P., E. Arvin, M. Mejlhede, and F. R. Lauritsen(1996)“Biodegradation of cis-1,2-dichloroethylene at low concentrations with methane-oxidizing bacteria in a biofilm reactor” Water Res. 30: 1885–1893 Ascon, M. A. and J. M. Lebeault(1999)“High Efficiency of a Coupled Aerobic-Anaerobic Recycling Biofilm Reactor System in Degradation of Recalcitrant Chloroaromatic Xenobiotic Compounds” Appl. Microbiol. Biotechnol. 52: 592-599 Aulenta, F., M. Majone, and V. Tandoi (2006) “Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions” Journal of Chemical Technology and Biotechnology 81: 1463-1474 Aulenta, F., S. Rossetti, M. Majone, and V. Tandoi(2004)“Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of Fluorescent In Situ Hybridization(FISH)and kinetic analysis” Applied and Environmental Microbiology 64: 206-212 Back, N. M. and P. R. Jaffe(1989)“ The degradation of trichloroethylene in mixed methonogenic cultures”J. Environ. Qual.18: 515–518 Ballapragada, B. S., D. H. Stensel, J. A. Puhakka, and J. F. Ferguson(1997)“Effect of hydrogen on reductive dechlorination of chlorinated ethenes” Environmental Science and Technology 31: 1728-1734 Behrens, S., M. F. Azizian, P. J. McMurdie, A. Sabalowsky, M. E. Dolan, L. Semprini, and A. M. Spormann(2008)“Monitoring abundance and expression of Dehalococcoides species chloroethene-reductive dehalogenases in tetrachloroethene-dechlorinating flow column” Applied and Environmental Microbiology 74: 5695-5703 Beunink, J. and H.-J. Rehm (1990) “Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system” Appl. Microbiol. Biotechnol. 34: 108-115 Bouwer, E. J., McCarty, P. L., (1983) ”Transformations of 1- and 2-carbon halogenated aliphatic organtic compounds under methanogenic conditions.” Appl. Environ. Microbial 45: 1286-1294 Bradley, P. M. and F. H. Chapelle(1998)“ Microbial Mineralization of VC and DCE Under Different Terminal Electron Accepting Conditions” Anaerobe. 4: 81-87 Broholm, K., L. Ludvigsen, F. J. Thorkild, and H. Ostergaard(2005)“Aerobic biodegradation of vinyl chloride and cis-1,2-dichloroethylene in aquifer sediments” Chemosphere 60: 1555–1564 Cabirol, N., J. Perrier, F. Jacob, B. Fouillet, and P. Chambon(1996)“Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture” Bulletin of Environmental Contamination and Toxicology 56: 817-824 Cobos-Vasconcelos, D. D. L., F. Santoyo-Tepole, C. Juarez-Ramirez, N. Ruiz-Ordaz, and C. J. J. Galindez-Mayer(2006)“Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture” Enzyme and Microbial Technology 40: 57-60 Coleman, N. V., T. E. Mattes, J. M. Gossett, and J. C. Spain(2002) “Biodegradation of cis-dichloroethene as the sole carbon source by a b-proteobacterium” Applied and Environmental Microbiology 68: 2726–2730 Conrad, M. E., E. L. Brodie, C. W. Radtke, M. Bill, M. E. Delwiche, M. H. Lee, D.L. Swift, and F. S. Colwell(2010)“Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater” Environmental Science and Technology 44: 4697-4704 Costa, A. K. and K. M. Ivanetich(1982)“ The 1,2-dichloroethylenes: Their metabolism by hepatic cytochrome P-450 in vitro”Biochem. Pharmacol. 31: 2083-2092 Cupples, A. M., A. M. Spormann, and P. L. McCarty(2004)“Vinyl chloride and cis-dichloroethene dechlorination kinetics and microorganism growth under substrate limiting conditions” Environmental Science and Technology 38: 1102-1107 Da-Brock, B., J. Riedel, J. Bertraam, and G. Gottschalk(1992)“Isopropylbenzene (cumene)—a new substrate for the isolation of trichloroethylene-degrading bacteria” Archiv. Microbiol. 158: 9–13 Daprato, R. C., F. E. Loffler, and J. B. Hughe (2007)“Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy” Environmental Science and Technology 41: 2261-2269 de Bruin, W. P., M. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder(1992)“Complete biological reductive transformation of tetrachloroethene to ethane” Applied and Environmental Microbiology 58: 1996-2000 DiStefano, T. D., Gossetti, J. M., Zinder, S. H., (1991) ”Reductive dechlorination of tetrachloroethene to ethane by an anaerobic enrichment culture in the absence of methanogenesis.” Appl. Environ. Microbiol. 57: 2287-2292 Dolan, M.E. and P. L. McCarty, (1995) “SmallColumn Microcosm for Assessing Methane-Stimulated Vinyl Chloride Transformation in Aquifer Samples.” Environmental Science and Technology, 29(8), pp. 1892-1897 Dorigo, U., L. Volatier, and J. F. Humbert(2005)“Molecular approaches to the assessment of biodiversity in aquatic microbial communities” Water Research 39: 2207-2218 Fathepure, B. Z., Boyd, S. A., (1988)”Reductive dechlorination of perchloroethylene and the role of methanogens.”FEMS Micro. Lett. 49: 149-156 Fathepure, B. Z., Boyd, S. A., (1988) ”Dependence on tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. Strain DCM. Appl Environ Microbiol 54: 2976-2980 Fathepure, B. Z., G. A. Younder, D. L. Richter, and C. E. Dowms(1995)“In-Situ Bioremediation of Chlorinated Hydrocarbons under Field Aerobic/Anaerobic Environment” In Bioremdiation of Chlorinated Solvents, R. E. Hinchee, A. Lesson, and L. Semprini(Eds.), Battele Press, Columdus, OH., 169-186 Fennell, D. E., S. H. Zinder, and J. M. Gossett(1997)“Comparative Studies of Hydrogen Donors for Stimulation of Tetrachloroethene Dechlorination” In Situ and On-Site Bioremediation, B. C. Allenman and A. Leeson (Eds), 3, Battelle Press, Columbus, Ohio, 11 Fogel, M. M., A. R. Taddeo, and S. Fogel(1986)“Biodegradation of chlorinated ethenes by a mixed methane-utilising mixed culture” Applied and Environmental Microbiology 51: 720–724 Freedman, D. L. and J. M. Gossett(1989)“Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions” Applied and Environmental Microbiology 55: 2144-2151 Freedman, D. L., A. S. Danko, and M. F. Verce(2001)“Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethene” Water Sci. Technol. 43: 333–340 Freundt, K. J., G. P. Liebaldt, and E. Lieberwirth(1977)“ Toxicity studies on trans-1,2-dichloroethylene” Toxicology 7: 141-153 Gerritse, J., G. Kloetstra, A. Borger, G. Dalstra, A. Alphenaar, and J. C. Gottshal(1997)“Complete Degradation of Tetrachloroethylene in Coupled Anoxic and Oxic Chenostats” Appl. Microbiol. Biotechnol. 48: 553-562 Gerritse, J., T. M. P. Gomes, and P. A. Lawson(1996)“Desulfitobacterium sp. strain-PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols” Archives of microbiology 165: 132-140 Gerritse, J., V. Renard, J. Visser, and J. C. Gottschal(1995)“ Complete egradation of Tetrachloroethene by Conbining Anaerobic Dechlorinating and Aerobic Mthanotrophic Enrichment Cultueres” Appl. Microbiol. Biotechnol. 43: 920-928 Griffin, B. M., J. M. Tiedje, and F. E. Loffler(2004)“Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene” Environmental Science and Technology 38: 4300-4303 Guiot, S. R., R. Cimpoia, R. Kuhn, and A. Alaplantive(2008)“Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept” Environmental Science and Technology 42: 43011-3017 Hamamura, N., C. Page, T. Long, L. Semprini, and D. J. Arp(1997)“Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium O3B” Applied and Environmental Microbiology 63: 3607–3613 Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajami, and O. Yagi(2000) “Degradation of trichloroethylene and related compounds by Mycobacterium sp. isolated from soil” Clean Prod. Proc. 2: 167–173 Haston, Z. C. and P. L. McCarty(1999)“Chlorinated ethane half-velocity coefficients(Ks)for reductive dehalogenation” Environmental Science and Technology 33: 223-226 He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler(2003)“Detoxification of vinyl chloride to ethane coupled to growth of an anaerobic bacterium” Nature 424: 62-65 Hendrickson, E. R., J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole(2002)“Molecular analysis of Dehalococcoides 16S ribosomal DNA from chlororthene-contaminated sites throughout north America and Europe” Applied and Environmental Microbiology 68: 485-495 Henson, J. M., M. V. Yates, J. W. Cochran, and D. L. Shackleford(1988)“Microbial removal of halogenated methanes, ethanes and ethylenes in an aerobic soil exposed to methane” FEMS Microb. Ecol. 53: 193–201 Hopkins, G. D. and P. L. McCarty(1995)“Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates” Environmental Science and Technology 29: 1628–1637 Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty(1993) “Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms” Environ. Sci. Technol., Vol. 27: 2542-2547 Hubert, C., Y. Shen, and G. Voordouw(2005)“ Changes in soil microbial community composition by cometabolism of toluene and trichloroethylene” Biodegradation 16: 11–22 Hunkeler, D., B. M. V. Breukelen, and M. Elsner(2009)“Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes” Environmental Science and Technology 43: 6750-6756 Kastner, M.(1991)“Reductive Dechlorination of Tri- and Tetrachloroethylenes Depends on Transition from Aerobic to Anaerobic Condition ” Appl. Microbiol. Biotechnol, 57(7): 2039-5046 Kim Broholm, Liselotte Ludvigsen, Thorkild Feldthusen Jensen, Henrik Ostergaard(2005)”Aerobic Biodegradation of Vinyl Chloride and Cis-1,2-dichloroethylene in aquifer sediments” Chemosphere 60: 1555-1564 Klier, N. J., R. J. West, and P. A. Donberg(1999)“Aerobic biodegradation of dichloroethylenes in surface and subsurface soils” Chemosphere 38: 1175–1188 Koziollek, P., D. Bryniok, and H.-J. Knackmuss(1999)“Ethene as an auxiliary substrate for the cooxidation of cis-1,2-dichloroethene and vinyl chloride” Archiv. Microbiol. 172: 240–246 Krumholz, L. R.(1997)“Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors” International Journal Systematic and Evolutionary Microbiology 47: 1262-1263 Lee, J. H., M. Dolan, J. Field, and J. Istok(2010)“Monitoring Bioaugmenation with Single-Well Push-Pull Tests in Sediment Systems Contaminated with Trichloroethene”Environmental Science and Technology 44: 1085-1092 Lee, S. D., S.-O. Kang, and Y. C. Hah(2000)“Hongia gen. nov., a new genus of the order Actinomycetales”Int J Syst Evol Microbiol 50: 191–199 Lendvay, J. M., F. E. Loffler, M. Dollhopf, M. R. Aiello, G. Daniels, B. Z. Fathepure, M. Gebhard, R. Heine, R. Helton, J. Shi, R. Krajmalnik-Brown, C. L. Major, JR., M. J. Barcelona, E. Petrovskis, R. hickey, J. M. Tiedje, and P. Adriaens(2003)“Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation” Environmental Science and Technology 37: 1422-1431 McCarty, P.L. (1971) ”Engergetics and Bacterial Growth”, in S.D. Faust and J.V. Hunter (eds), Oganic Compounds in Aquatic Environments, Marcel Dekker, Inc., NEW York. Major, D. W., M. L. Mcmaster, E. E. Cox, E. A. Edwards, S. M. Dworatzek, E. R. Hendrickson, M. G. Starr, J. A. Payne, and L. W. Buonamici(2002)“Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene” Environmental Science and Technology 36: 5106-5116 Malachowsky, K. J., T. J. Phelps, A. B. Teboli, D. E. Minnikin and D. C. White, (1994) “Aerobic Mineralization of Trichloroethylene, Vinyl Chloride, and Aromatic Compounds by Rhodococcus species,” Applied and Environmental Microbiology, 60(2), pp. 542-548 Mattes, T. M., A. K. Alexander, P. M. Richardson, A. C. Munk, C. S. Han, P. Stothard, and N. V. Coleman (2008)“The genome of Polaromonas sp. Strain JS666: insights into the evolution of a hydrocarbon-and xenobiotic-degrading bacterium, and features of relevance to biotechnology” Applied and Environmental Microbiology. 74: 6405–6416 MaymO-Gatell, X., W. Tandoi, J. M. Gossett, and S. H. Zinder (1995)“ Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis” Applied and Environmental Microbiology 61: 3928–3933 MaymO-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder(1997)“Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane” Science 276: 1568-1571 Miller, T. R., M. P. Franklin, and R. U. Halden(2007)“Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation” FEMS Microbiology Ecology 60(2): 299-311 Mohn, W. W. and J. M. Tiedje(1992) “Microbial reductive Dehalogenation” Microbiological Reviews 56: 482-507 Oldenhuis, R., J. Y. Oedzes, J. J. Waarde, and D. B. van der Janssen(1991)“Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3 and toxicity of trichloroethylene” Applied and Environmental Microbiology 57: 7–14 Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace(1986)“Microbial ecology and evolution: a ribosomal RNA approach” Annual Review of Microbiology 40: 337–365 Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen(1986)“The analysis of natural microbial populations by ribosomal RNA sequences” Advances in Microbial Ecology 9: 1-55 Parsons, F., P.R. Wood, and J. DeMarco(1984)“Transformation of tetrachloroethene and trichloroethene in microcosms and groundwater”J. Am. Water Works Assoc. 76: 56–59 P A U L M . B R A D L E Y , F R A N C I S H . C H A P E L L E(2000)”Aerobic Microbial Mineralization of Dichloroethene as Sole Carbon Substrate” Environ. Sci. Technol. 2000, 34, 221-223 Schafer, A. and E. J. Bouwer(2000)“Toluene induced cometabolism of cis-1,2-dichloroethylene and vinyl chloride under conditions expected downgradient of a permeable Fe(0) barrier” Water Res. 34: 3391–3399 Scheutz, C., N. D. Durant, P. Dennis, M. H. Hansen, T. Jorgensen, R. Jakobsen, E. E. Cox, and P. Bjerg(2008)“Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during and enhanced reductive dehchlorination field demonstration” Environmental Science and Technology 42: 9302-9309 Schink, B.(1997)“Energetics of syntrophic cooperation in methanogenic degradation” Microbiology and Molecular Biology Reviews 61: 262-280 Schmidt, K. R. and A. Tiehm(2008)“ Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies” Water SciTechnol 58: 1137-1145 Schmidt, K. R., T. Augenstein, M. Heidinger, S. Ertl, and A. Tiehm(2010)“Aerobic biodegradation of cis-1,2-dichloroethene as sole carbon source: Stable carbon isotope fractionation and growth characteristics” Chemosphere 78: 527–532 Schneider, B., R. Muller, R. Frank, and F. Lingens(1991)“ Complete nucleotidesequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas species CBS3” J. Bacteriol. 173: 1530-1535 Scholz-Muramatsu, H., Aneumann, M. Messmer, E. Moore, and G. Diekert(1995)“Isolation and characterization of Dehalospirillum multivorans gen .nov., sp. nov., a aetrachloroethene-utilizing, strictly anaerbic bacterium” Archives of microbiology 163: 48-56 Sharma, P. K. and P. L. McCarty(1996)“Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene” Applied and Environmental Microbiology 62: 761-765 Shukla, A. K., P. Vishwakarma, S. N. Upadhyay, A. K. Tripathi, H. C. Prasana, and S. K. Dubey(2009)“ Biodegradation of trichloroethylene (TCE) by methanotrophic community” Bioresource Technology 100: 2469–2474 Smatlak, C. R., J. M. Gossett, and S. H. Zinder(1996) “Comparative Kinetics of Hydrogen Utilization for Reductive Dechlorination of Tetrachloroethene and Methanogenesis in an Anaerobic Enrichment Culture” Environmental Science and Technology 30: 2850-2858 Sung, Y., K. M. Ritalahti, T. A. Sanford, J. W. Urbance, S. J. Flynn, J. M. Tiedje, and F. E. Loffler(2003)”Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov” Applied and Environmental Microbiology 69: 2964-2974 Speitel, G. E, R. C. Thompson, and D. Weissman (1993) “Biodegradation Kinetics of Methylosinus trichosporium OB3b at Low Concentrations of Chloroform in the Presence and Absence of Enzyme Competition by Methane”, Water Research. 27:15-24 Thomas, J. M. and C. H. Ward(1989)“In Situ Biorestoration of Organic Contaminants in the Subsurface” Environmental Science and Technology 23(7): 760-766 Tiehm, A. and K. R. Schmidt(2011)“Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application” Current Opinionin Biotechnology 22: 1–7 USEPA(1991)“Dense Nonaqueous Phase Liquids” EPA 540-4-91-002 USEPA(1997)“How heat can enhance in-situ soil and aquifer remediation:important chemical properties and quidance on choosing the appropriate technique” EPA 540-S-97-502 USEPA(2004)“How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: a Guide for Corrective Action Plan Reviewers” EPA 510-R-04-002 Vannelli, T., H. Logan, D.M. Arciero, and A.B. Hooper, (1990)“Degradation of halogenated aliphatic compounds by the ammonium-oxidizing bacteria Nitrosomonas europaea” Applied and Environmental Microbiology 56: 1169–1171 Verse, M. F., R. L. Ulrich and D. L. Freeman, (2002) “Characterization of an Isolate That Uses Vinyl Chloride as a Growth Substrate under Aerobic Conditions.” Applied and Environmental Microbiology, 36(10), pp. 2171-2177 Vogel, T. M., C. S. Criddle, and P. L. McCarty(1987)“ Transformation of halogenated aliphatic compounds” Environmental Science and Technology 21: 722–736 Volpe A., D. M. Guido, R. Simona, T. Valter, and L. Antonio(2007)“Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: a laboratory-scale study”Process Biochemistry 42: 1498-1505 Wackett, L. P. and D. T. Gibson(1988)“ Degradation of trichloroethylene by toluene-dioxygenase in whole-cell studies with Pseudomonas putida F1” Applied and Environmental Microbiology 54: 1703–1708 Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson(1989)“Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria” Applied and Environmental Microbiology 55: 2960–2964 Wilson, J. T. and B. H. Wilson (1985) “Biotransformation of Trichloroethylene in Soil” Appl. Environmental Microbiology. 49(1): 242-243 Windholz, M., (1983) “The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals, 10th ed. Merck & Co. Inc, Rahway, NJ Woese, C. R.(1978)“Bacterial evolution” Microbiology Review 51: 211-271 Yang, Y. and J. Zeyer(2003)“Specific detection of dehalococcoides species by Fluorescence In Situ Hybridization with 16S rRNA-targeted oligonucleotide probes” Applied and Environmental Microbiology 69: 2879-2883 Zhao, H. P., K. R. Schmidt, and A. Tiehm(2010)“Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes” Water Research 44: 2276-2282 Ziagova, M. and M. Liakopoulou-Kyriakides(2007)“Kinetics of 2,4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. cultures in the presence of glucose” Chemosphere 68: 921-927
摘要: 
本研究之目的是以管柱模擬受厭氧分解不完全而累積的二氯乙烯(DCE)的地下水飽和含水層,以甲烷作為共代謝主要基質,利用生物好氧共代謝的方式進行降解。並與先前利用生物添加的方式探討植種菌於模擬含水層中對二氯乙烯的降解效應。
研究結果顯示生物刺激階段,經過 60 天的定期監測,四氯乙烯可以在厭氧階段就被完全降解,主要副產物為二氯乙烯。於好氧管柱中發現二氯乙烯未能完全降解,去除率為 65 %。而共代謝階段,經過 60 天的定期監測後發現二氯乙烯於好氧管柱中,需較長的時間與距離才可完全降解,但是去除率可以接近 100 %,而副產物氯乙烯可在好氧管柱上游端就被完全降解。
批次試驗結果顯示,以不同的添加方式添加甲烷會影響二氯乙烯降解效率,是由於耗氧速率不同所導致。而添加過氧化氫後,二氯乙烯之去除率有顯著地上升,且皆與一階動力式有較佳之相關性,顯示二氯乙烯之生物降解屬於一階動力反應。而添加過量之過氧化氫,雖然二氯乙烯降解效率有提升的趨勢,但是會造成微生物活性受到抑制甚至會導致衰退。

Due to incomplete anaerobic biodegradation of PCE, dichloroethylene (DCE) accumulates in saturated groundwater aquifers. A column study was conducted to simulate the degradation of DCE through aerobic co-metabolism using methane as the primary substrate. In addition, a comparison of the DCE degradation efficiency and the microorganism community structure with previous research was conducted.
Results of the biostimulation study showed that PCE could be readily degraded in the anaerobic environment after 60 days of column operating, leading to increase in the by-product – DCE formation. DCE could not be effectively degraded in the subsequent aerobic column, with a removal efficiency of 65%. However, when the system was operated at aerobic co-metabolism process, the degradation of DCE improved to 100%. The by-product of DCE – vinyl chloride (VC), could also be degraded simultaneously.
Batch experiments showed that various methods of methane addition affects the degradation rate of DCE due to the rate of oxygen consumption. With the addition of hydrogen peroxide, the removal rate of DCE increased significantly with the excess consumption of oxygen and methane by aerobic microorganisms. Also, the kinetics of DCE degradation follows a first-order reaction rate.
URI: http://hdl.handle.net/11455/5865
其他識別: U0005-1508201322352800
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7100063028-1.pdf1.98 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.