Please use this identifier to cite or link to this item:
標題: 活性碳複合黃鐵礦材料製備及應用於處理四氯化碳污染物之探討
Synthesis of activated carbon/pyrite material for the remediation of carbon tetrachloride
作者: 簡維均
Chien, Wei-Chun
關鍵字: 氯化有機溶劑;Chlorinated solvents;黃鐵礦;吸附;還原脫氯;透水性反應牆;pyrite;adsorption;reductive dechlorination;permeable reactive barrier
出版社: 環境工程學系所
引用: Amonette, J.E., Workman, D.J., Kennedy, D.W., Fruchter, J.S., Gorby, Y.A., 2000. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science & Technology 34, 4606-4613. ATSDR, 2005. Toxicological Profile for Carbon Tetrachloride. Agency for Toxic Substances & Disease Registry. Public Health Service. Backhus, D.A., Picardal, F.W., Johnson, S., Knowles, T., Collins, R., Radue, A., Kim, S., 1997. Soil- and surfactant-enhanced reductive dechlorination of carbon tetrachloride in the presence of Shewanella putrefaciens 200. Journal of Contaminant Hydrology 28, 337-361. Bandosz, T.J., Ania, C.O., 2006. Surface chemistry of activated carbons and its characterization. in: Teresa, J.B. (Ed.). Interface Science and Technology. Elsevier, Netherlands, pp. 159-229. Berk, Z., 2009. Adsorption and ion exchange. Food Process Engineering and Technology. in: Berk, Z. (Ed.). Academic Press, San Diego, pp. 279-294. Boehm, H.P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769. Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.-J., Behra, P., 1998. Surface oxidation of pyrite as a function of pH. Environmental Science & Technology 32, 2839-2845. Burris, D.R., Campbell, T.J., Manoranjan, V.S., 1995. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environmental Science & Technology 29, 2850-2855. Caldeira, C.L., Ciminelli, V.S.T., Dias, A., Osseo-Asare, K., 2003. Pyrite oxidation in alkaline solutions: nature of the product layer. International Journal of Mineral Processing 72, 373-386. Caldeira, C.L., Ciminelli, V.S.T., Osseo-Asare, K., 2010. The role of carbonate ions in pyrite oxidation in aqueous systems. Geochimica et Cosmochimica Acta 74, 1777-1789. Carey, M.A., Fretwell, B.A., Mosley, N.G., Smith, J.W.N., 2002. Guidance on the use of permeable reactive barriers for remediating contaminated groundwater. EA NC/01/05. United Kingdom Environment Agency (UKEA). Celebi, O., Uzum, C., Shahwan, T., Erten, H.N., 2007. A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials 148, 761-767. Chandra, A.P., Gerson, A.R., 2010. The mechanisms of pyrite oxidation and leaching: A fundamental perspective. Surface Science Reports 65, 293-315. Charlet, L., Silvester, E., Liger, E., 1998. N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface FeIIIOFeIIOH° species, as major reductant. Chemical Geology 151, 85-93. Che, H., Lee, W., 2011. Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension. Chemosphere 82, 1103-1108. Chen, L.-H., Huang, C.-C., Lien, H.-L., 2008a. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73, 692-697. Chen, L.-H., Huang, C.-C., Lien, H.-L., 2008b. Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 73, 692-697. Choi, H., Agarwal, S., Al-Abed, S.R., 2008a. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: Mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology 43, 488-493. Choi, H., Al-Abed, S.R., Agarwal, S., 2009a. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon. Environmental Science & Technology 43, 7510-7515. Choi, H., Al-Abed, S.R., Agarwal, S., 2009b. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl. Environmental Science & Technology 43, 4137-4142. Choi, H., Al-Abed, S.R., Agarwal, S., Dionysiou, D.D., 2008b. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials 20, 3649-3655. Choi, J., Choi, K., Lee, W., 2009c. Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. Journal of Hazardous Materials 162, 1151-1158. Choi, K., Lee, W., 2009. Reductive dechlorination of carbon tetrachloride in acidic soil manipulated with iron(II) and bisulfide ion. Journal of Hazardous Materials 172, 623-630. Cohn, C.A., Laffers, R., Simon, S.R., O''Riordan, T., Schoonen, M.A., 2006. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health. Part Fibre Toxicol 3, 16. Criddle, C.S., DeWitt, J.T., McCarty, P.L., 1990. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Appl Environ Microbiol 56, 3247-3254. Danielsen, K.M., Hayes, K.F., 2004. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environmental Science & Technology 38, 4745-4752. Duan, H., Zheng, Y.F., Dong, Y.Z., Zhang, X.G., Sun, Y.F., 2004. Pyrite (FeS2) films prepared via sol-gel hydrothermal method combined with electrophoretic deposition (EPD). Materials Research Bulletin 39, 1861-1868. Egli, C., Tschan, T., Scholtz, R., Cook, A.M., Leisinger, T., 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol 54, 2819-2824. Fanning, P.E., Vannice, M.A., 1993. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon 31, 721-730. Feng, J., Lim, T.-T., 2005. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59, 1267-1277. Furman, O.S., Teel, A.L., Watts, R.J., 2010. Mechanism of base activation of persulfate. Environmental Science & Technology 44, 6423-6428. Gao, X., Yang, F., Lan, Y., Mao, J.D., Duan, X., 2011. Rapid degradation of carbon tetrachloride by commercial micro-scale zinc powder assisted by citric acid. Environmental Chemistry Letters 9, 431-438. Guo, Z., Chen, Y., Zhou, W., Huang, Z., Hu, Y., Wan, M., Bai, F., 2008. Facilely dispersible magnetic nanoparticles prepared by a surface-initiated atom transfer radical polymerization. Materials Letters 62, 4542-4544. Hanoch, R.J., Shao, H., Butler, E.C., 2006. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite. Chemosphere 63, 323-334. Helland, B.R., Alvarez, P.J.J., Schnoor, J.L., 1995. Reductive dechlorination of carbon tetrachloride with elemental iron. Journal of Hazardous Materials 41, 205-216. Hristovski, K.D., Westerhoff, P.K., Moller, T., Sylvester, P., 2009. Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. Chemical Engineering Journal 146, 237-243. Hu, Z., Vansant, E.F., 1995. Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell. Microporous Materials 3, 603-612. Huang, K.-C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P.A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551-560. Huling, S.G., Jones, P.K., Lee, T.R., 2007. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon. Environmental Science & Technology 41, 4090-4096. Inagaki, M., Tascon, J.M.D., 2006. Pore formation and control in carbon materials. in: Teresa, J.B. (Ed.). Interface Science and Technology. Elsevier, Netherlands, pp. 49-105. ITRC, 2005. Permeable Reactive Barriers:Lessons Learned/New Directions. Interstate Technology and Regulatory Council (ITRC), Washington, pp. 1-20. Juntgen, H., 1977. New applications for carbonaceous adsorbents. Carbon 15, 273-283. Johnson, T.L., Fish, W., Gorby, Y.A., Tratnyek, P.G., 1998. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface. Journal of Contaminant Hydrology 29, 379-398. Kanel, S.R., Manning, B., Charlet, L., Choi, H., 2005. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 39, 1291-1298. Karthe, S., Szargan, R., Suoninen, E., 1993. Oxidation of pyrite surfaces: a photoelectron spectroscopic study. Applied Surface Science 72, 157-170. Kim, E.J., Batchelor, B., 2009. Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Materials Research Bulletin 44, 1553-1558. Knappe, D.R.U., 2006. Surface chemistry effects in activated carbon adsorption of industrial pollutants. in: Gayle, N., David, D. (Eds.). Interface Science and Technology. Elsevier, Netherlands, pp. 155-177. Kohn, T., Arnold, W.A., Roberts, A.L., 2006. Reactivity of substituted benzotrichlorides toward granular iron, Cr(II), and an iron(II) porphyrin:  A correlation analysis. Environmental Science & Technology 40, 4253-4260. Kommineni, S., Ela, W.P., Arnold, R.G., Huling, S.G., Hester, B.J., A., E., 2003. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science 20, 361-373. Korpiel, J.A., Vidic, R.D., 1997. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environmental Science & Technology 31, 2319-2325. Kriegman-King, M.R., Reinhard, M., 1992. Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environmental Science & Technology 26, 2198-2206. Kriegman-King, M.R., Reinhard, M., 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology 28, 692-700. Kulkarni, P.P., Kovalchuk, V.I., d''Itri, J.L., 2002. Oligomerization pathways of dichlorodifluoromethane hydrodechlorination catalyzed by activated carbon supported Pt-Cu, Pt-Ag, Pt-Fe, and Pt-Co. Applied Catalysis B: Environmental 36, 299-309. Langwaldt, J.H., Puhakka, J.A., 2000. On-site biological remediation of contaminated groundwater: a review. Environmental Pollution 107, 187-197. Lawes, G., 1987. Scanning Electron Microscopy and X-ray Microanalysis. John Wiley & Sons, Chichester. Li, J., Ma, L., Li, X., Lu, C., Liu, H., 2005. Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Industrial & Engineering Chemistry Research 44, 5478-5482. Li, L., Quinlivan, P.A., Knappe, D.R.U., 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085-2100. Li, X.-q., Elliott, D.W., Zhang, W.-x., 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 31, 111-122. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55, 1225-1233. Liang, C., Huang, C.-F., Chen, Y.-J., 2008. Potential for activated persulfate degradation of BTEX contamination. Water Research 42, 4091-4100. Liang, C., Lee, P.-H., 2012. Granular activated carbon/pyrite composites for environmental application: synthesis and characterization. Journal of Hazardous Materials (Accepted) Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 12, 207-228. Lim, T.-T., Feng, J., Zhu, B.-W., 2007. Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Research 41, 875-883. Lipczynska-Kochany, E., Harms, S., Milburn, R., Sprah, G., Nadarajah, N., 1994. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds. Chemosphere 29, 1477-1489. Liu, Y., Lowry, G.V., 2006. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity:  H2 evolution and TCE dechlorination. Environmental Science & Technology 40, 6085-6090. Liu, Z., Zhang, F.-S., 2010. Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresource Technology 101, 2562-2564. Lowson, R.T., 1982. Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews 82, 461-497. Luo, S., Yang, S., Wang, X., Sun, C., 2010. Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 79, 672-678. Maithreepala, R.A., Doong, R.-a., 2003. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite. Environmental Science & Technology 38, 260-268. Mangun, C.L., Benak, K.R., Daley, M.A., Economy, J., 1999. Oxidation of activated carbon fibers:  Effect on pore size, surface chemistry, and adsorption properties. Chemistry of Materials 11, 3476-3483. Marsh, H., Rodriguez-Reinoso, F., 2006. Characterization of activated carbon. Activated Carbon. Elsevier, Oxford, pp. 143-242. Martin-Martinez, J.M., Vannice, M.A., 1991. Carbon-supported iron catalysts: influence of support porosity and preparation techniques on crystallite size and catalytic behavior. Industrial & Engineering Chemistry Research 30, 2263-2275. Matheson, L.J., Tratnyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28, 2045-2053. Moses, C.O., Herman, J.S., 1991. Pyrite oxidation at circumneutral pH. Geochimica et Cosmochimica Acta 55, 471-482. Murphy, R., Strongin, D.R., 2009. Surface reactivity of pyrite and related sulfides. Surface Science Reports 64, 1-45. Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., Driessen, M.D., 2004. Characterization and properties of metallic iron nanoparticles:  Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology 39, 1221-1230. Ocampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sanchez-Polo, M., 2010. Modeling adsorption rate of pyridine onto granular activated carbon. Chemical Engineering Journal 165, 133-141. Patel, U., Suresh, S., 2006. Dechlorination of chlorophenols by magnesium-silver bimetallic system. Journal of Colloid and Interface Science 299, 249-259. Patterson, A.L., 1939. The scherrer formula for X-ray particle size determination. Physical Review 56, 978-982. Pecher, K., Haderlein, S.B., Schwarzenbach, R.P., 2002. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environmental Science & Technology 36, 1734-1741. Pradhan, B.K., Sandle, N.K., 1999. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37, 1323-1332. Rimstidt, J.D., Vaughan, D.J., 2003. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta 67, 873-880. Ruthven, D.M., 1985. Principles of Adsorption and Adsorption Processes. John Wiley & Sons, New York. Shankar, S.S., Ahmad, A., Sastry, M., 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 19, 1627-1631. Shao, H., Butler, E.C., 2007. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments. Chemosphere 68, 1807-1813. Shim, J.-W., Park, S.-J., Ryu, S.-K., 2001. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39, 1635-1642. Siegrist, R.L., Crimi, M., Brown, R.A., 2011. In situ chemical oxidation: Technology description and status. in: Siegrist, R.L., Crimi, M., Simpkin, T.J. (Eds.). In Situ Chemical Oxidation for Groundwater Remediation. Springer Science+Business Media, New York. Siyu, H., Xinyu, L., QingYu, L., Jun, C., 2009. Pyrite film synthesized for lithium-ion batteries. Journal of Alloys and Compounds 472, 9-12. Smestad, G., Ennaoui, A., Fiechter, S., Tributsch, H., Hofmann, W.K., Birkholz, M., Kautek, W., 1990. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials 20, 149-165. Stumm, W., 1993. Chemistry of the solid-water interface processes at the mineral-water and particle-water interface in natural systems. Soil Science 156, 205. Suffet, I.H., McGuire, M.J., 1980. Activated Carbon Adsorption of Organics from the Aqueous Phase. Ann Arbor Science, Michigan. TAmara, M.L., Butler, E.C., 2004. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal. Environmental Science & Technology 38, 1866-1876. Teel, A.L., Watts, R.J., 2002. Degradation of carbon tetrachloride by modified Fenton’s reagent. Journal of Hazardous Materials 94, 179-189. Tseng, H.-H., Su, J.-G., Liang, C., 2011. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials 192, 500-506. USEPA, 1998. Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA 600-R-98-125. United States Environmental Protection Agency (USEPA). Vikesland, P.J., Heathcock, A.M., Rebodos, R.L., Makus, K.E., 2007. Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environmental Science & Technology 41, 5277-5283. Volkering, F., Breure, A.M., Rulkens, W.H., 1997. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8, 401-417. Wang, C.-B., Zhang, W.-x., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 31, 2154-2156. Wang, W., Jin, Z.-h., Li, T.-l., Zhang, H., Gao, S., 2006. Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65, 1396-1404. Watts, R.J., Howsawkeng, J., Teel, A.L., 2005. Destruction of a Carbon Tetrachloride Dense Nonaqueous Phase Liquid by Modified Fenton''s Reagent. Journal of Environmental Engineering 131, 1114-1119. Weerasooriya, R., Dharmasena, B., 2001. Pyrite-assisted degradation of trichloroethene (TCE). Chemosphere 42, 389-396. West, C.C., Harwell, J.H., 1992. Surfactants and subsurface remediation. Environmental Science & Technology 26, 2324-2330. Xu, X., Zhou, H., Zhou, M., 2006. Catalytic amination and dechlorination of para-nitrochlorobenzene (p-NCB) in water over palladium–iron bimetallic catalyst. Chemosphere 62, 847-852. Xu, Y., Zhang, W.-x., 2000. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Industrial & Engineering Chemistry Research 39, 2238-2244. Yang, J., Cao, L., Guo, R., Jia, J., 2010. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials 184, 782-787. Zhang, T., Fan, L.T., Walawender, W.P., Fan, M., Bland, A.E., Zuo, T., Collins, D.W., 2010. Hydrogen storage on carbon adsorbents: A review. in: Maohong, F. (Ed.). Environanotechnology. Elsevier, Amsterdam, pp. 137-163. Zhang, X., Deng, B., Guo, J., Wang, Y., Lan, Y., 2011. Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. Journal of Environmental Management 92, 1328-1333. Zhu, H., Jia, Y., Wu, X., Wang, H., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials 172, 1591-1596. 行政院環保署, 2005. 油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊. 行政院環保署. 行政院環保署, 2007. 土壤及地下水受比水重非水相液體污染場址整治技術選取、系統設計要點與注意事項參考手冊. 行政院環保署. 行政院環保署, 2009a. 地下水污染管制標準. 行政院環保署. 行政院環保署, 2009b. 飲用水水質標準. 行政院環保署. 行政院環保署, 2010. 毒性化學物質災害防救查詢系統. 行政院環保署. 行政院環保署, 2012. 土壤及地下水污染整治網/列管場址查詢. 行政院環保署. 吳宇瀚, 2005. 添加氧化硼、氧化磷、氟化鎂以及氧化鋅對低膨脹Li2O-Al2O3-SiO2 玻璃陶瓷的顯微結構、熱膨脹性與抗折強度之影響. 國立清華大學工程與系統科學系碩士論文. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 第23期, 第13-20頁. 黃國瑋, 2004. CuO對銻掺雜氧化錫之燒結緻密化與導電性質影響. 國立成功大學材料科學及工程學系碩士論文. 雷鎔瑄, 2011. 過硫酸鹽活化程序對整治難分解性有機污染物之適用性篩選試驗. 國立中興大學環境工程學系碩士論文.
本研究嘗試製備活性碳(Granular activated carbon, GAC)披覆黃鐵礦(Pyrite, FeS2)之反應性吸附材料,並探討其應用於處理四氯化碳(Carbon tetrachloride, CT)污染水體之可行性。實驗利用含浸法(Impregnation method)及鍛燒法(Calcination method)將FeS2披覆至GAC,形成GAC-FeS2複合材料,經由SEM分析發現GAC表面披覆許多角狀FeS2顆粒,其粒徑範圍約在80~100 nm;此外,XRD分析GAC-FeS2之圖譜顯示證實黃鐵礦之存在。批次實驗利用劑量為1 g/L之GAC-FeS2,於不同pH條件(pH 5.5~12),對100 mg/L CT之水溶液進行吸附及還原脫氯試驗,結果pH 12時,GAC-FeS2可有效對CT進行吸附並還原降解,反應28天觀測到脫氯百分率約為29%,並偵測到脫氯副產物氯仿(Chloroform, CF)生成,相較於其他pH條件,高pH環境下,FeS2本身氧化速率較快因而加速電子轉移,提升CT還原速率;此外,經XRD分析結果顯示,FeS2氧化生成赤鐵礦(Fe2O3)等鐵氧化物,並且在高pH環境下,鐵氧化物表面帶負電並吸引更多二價鐵鍵結,形成具有較高反應性之表面鍵結二價鐵,提高CT降解反應速率。當改變初始CT濃度,並觀察GAC-FeS2對CT還原速率影響,其結果得知CT之降解反應符合假一階反應動力模式,且在較低之初始CT濃度下CT還原速率較快。初始CT濃度為10 mg/L時,CT還原速率常數為0.057 day-1,隨著初始CT濃度增加至30及100 mg/L時,CT還原速率常數則分別降至0.039及0.023 day-1。

This study attempted to synthesize a reactive activated carbon by coating pyrite (FeS2) onto granular activated carbon (GAC) for the potential use of treating carbon tetrachloride (CT) contamination. The synthetic composites, i.e., GAC-FeS2 were successfully prepared by impregnation and calcination methods. SEM images showed that the particle size of FeS2 over GAC surface was about 80 to 100 nm. Furthermore, XRD patterns confirmed the existence of pyrite being coated on GAC. In batch experiments, the dosage of 1 g/L GAC-FeS2 under different pH conditions (pH 5.5~12) was employed for adsorbtion/dechlorination of 100 mg/L CT in aqueous phase. The results showed that GAC-FeS2 can effectively reduce CT within 28 days under pH 12 and 29% dechlorination and byproduct chloroform (CF) were observed. While comparing results among different pH conditions, dechlorination of CT was fast at high pH condition due to that FeS2 was promptly oxidized at alkaline pH and resulted in a fast electron transfer rate to accelerate dechlorination of CT. In addition, the result of XRD analysis showed that the FeS2 was mainly oxidized to form hematite (Fe2O3). The iron oxide species would attract more Fe2+ to form high reactive species, i.e., surface-bound Fe2+, and then increase CT reductive reaction rate. Then this study investigated effect of initial CT concentration on the CT reductive reaction rate. The results showed that CT degradation reaction fitted pseudo-first-order kinetic model. It was also found that the lower initial CT concentration results in the higher CT reductive reaction rate. When the initial CT concentration was 10 mg/L, CT reduction rate constant was 0.057 day-1; when the initial CT concentration increased to 30 and 100 mg/L, the CT reduction rate constants were reduced to 0.039 and 0.023 day-1, respectively.
其他識別: U0005-0108201210400700
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.