Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5872
標題: 流式質體儀:超高速之微生物鑑定定量研究 -微水珠中螢光偵測方法研究
FlowOmics: high throughput microbial identification and quantification - fluorescence detection in aqueous microdroplets
作者: 顏懷宣
Yen, Huai-Shiuan
關鍵字: 微流體生物晶片;Microfluidic biochip;微水珠形成;螢光訊號偵測;LabVIEW;Droplet;Double fluorescence;LabVIEW
出版社: 環境工程學系所
引用: 1. 伍秀菁, 汪若文, 林美吟. 2003. 微機電系統技術與應用 = Micro electro mechancial systems technology & application. 行政院國家科學委員會精密儀器發展中心. 2. 江婉嘉. 2004. 應用螢光染色法以螢光顯微鏡與流式細胞儀 評估醫院污水處理廠水中微生物特性, 臺灣大學環境衛生研究所學位論文. 3. 李國賓. 2005. 微流體生醫晶片, 行政院國家科學發展委員會, 科學發展,385,72-77 4. 林昆德. 2011. 實驗記錄簿. 中興大學環境工程學系永續生物實驗室. SBL030. 5. 林俊宏, 韓威如, 莊智元. LabVIEW硬體介面 DAQ感測器篇. 高立圖書有限公司. 6. 林宸生, 陳德請. 2001. 近代光電工程導論, 全華科技圖書股份有限公司. 7. 林螢光. 2003. 光電子學, 全華圖書股份有限公司. 8. 張守進, 劉醇星, 姬梁文. 2002. 半導體雷射. 行政院國家科學發展委員會, 科學發展, 349, 91. 9. 陳炳輝. 2003. 微機電系統, 五南圖書出版股份有限公司. 10. 陳隆建. 2010. 發光二極體之原理與製程, 全華圖書股份有限公司. 11. 許書務, 游金湖. 1995. 光電元件應用技術, 全華科技圖書股份有限公司. 12. 梁國棟. 2003. 最新分子生物學:實驗技術. 藝軒圖書出版社. 13. 黃國華. 2004. 基因晶片與生物醫學. 科學發展, 381, 64-69. 14. 黃敏男. 2009. 以流式細胞儀結合螢光原位雜交技術分析活性污泥之菌群結構. 中興大學環境工程研究所學位論文. 15. 葉德川. 2001. 深具潛力的 CMOS 影像感測器. 光連: 光電產業與技術情報(32), 44-46. 16. 楊書豪. 2009. 實驗記錄簿. 中興大學環境工程學系永續生物實驗室. SBL022. 17. 楊倧儒. 2009. 流式質體儀:超快速高輸出質體學研究量化儀器開發-流體動態聚焦與細胞溶解. 中興大學環境工程研究所學位論文. 18. 楊倧儒. 2009. 實驗記錄簿. 中興大學環境工程學系永續生物實驗室. SBL018. 19. 楊國輝, 黄宏彦. 2001. 雷射原理與量測概論. 五南圖書出版公司. 20. 溫永福, 鄭勇涇, 郭麗香, 周雪美. 1991. 生物學實驗, 藝軒圖書出版社. 21. 鄭明哲. 1993. 光通信, 全華科技圖書股份有限公司. 22. 蕭子健, 儲昭偉, 王智昱. 1998. LabVIWE 基礎篇. 高立圖書有限公司. 23. 謝勝治. 2000. 圖控式程式語言-LabVIEW. 全華科技圖書股份有限公司. 24. 藤田 博之, 溫榮弘. 2004. 微機電系統技術入門. 全華科技圖書股份有限公司. 25. 蘇慧慈. 1996. 原位分子生物學技術. 財團法人徐式基金會. 26. 闞周傳. 2007. 用於液晶投影系統之超高壓汞燈電子安定器. 中原大學電機工程研究所學位論文. 27. Akunna, J.C., Bizeau, C., Moletta, R. 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research, 27(8), 1303-1312. 28. Anderson, B.L., Anderson, R.L. 黃俊達, 鄭湘原. 2008. 半導體元件概論 = Fundamentals of Semiconductor. 全威圖書有限公司, 560-561 29. Anderson, J.R., Chiu, D.T., Wu, H., Schueller, O.J.A., Whitesides, G.M. 2000. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis, 21, 27-40. 30. Anna, S.L., Bontoux, N., Stone, H.A. 2003. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters, 82(3), 364. 31. Aubry, G., Meance, S., Couraud, L., Haghiri-Gosnet, A.M., Kou, Q. 2009. Intracavity microfluidic dye laser droplet absorption. Microelectronic Engineering, 86(4-6), 1368-1370. 32. Bartlett, J.M.S. 2003. Fluorescence in situ hybridization. Molecular Diagnosis of Cancer, 77-87. 33. Bodrossy, L., Sessitsch, A. 2004. Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol, 7(3), 245-54. 34. Bolton, D.L., Roederer, M. 2009. Flow cytometry and the future of vaccine development. Expert review of vaccines, 8(6), 779-789. 35. Cao, Y., He, X., Gao, Z., Peng, L. 1999. Fluorescence energy transfer between acridine orange and safranine T and its application in the determination of DNA. Talanta, 49(2), 377-383. 36. Chang-Yen, D.A., Eich, R.K., Gale, B.K. 2005. A monolithic PDMS waveguide system fabricated using soft-lithography techniques. Journal of lightwave technology, 23(6), 2088-2093. 37. Chen, R., Guo, H., Shen, Y., Hu, Y., Sun, Y. 2006. Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection. Sensors and Actuators, B 114, 1100–1107. 38. Diaz, M., Herrero, M., Garcia, L.A., Quiros, C. 2010. Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engineering Journal, 48(3), 385-407. 39. Dragan, A.I., Casas-Finet, J.R., Bishop, E.S., Strouse, R.J., Schenerman, M.A., Geddes, C.D. 2010. Characterization of PicoGreen Interaction with dsDNA and the Origin of Its Fluorescence Enhancement upon Binding. Biophys Journal, 99(9): 3010–3019. 40. Hedley, D.W., Friedlander, M.L., Taylor, I.W. 1985. Application of DNA flow cytometry to paraffin‐embedded archival material for the study of aneuploidy and its clinical significance. Cytometry, 6(4), 327-333. 41. Hu, Q., DOU, M., QI, H., XIE, X., ZHUANG, G., YANG, M. 2007. Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. Journal of Environmental Sciences, 19(9), 1114-1119. 42. Hu, R., Feng, X., Chen, P., Fu, M., Chen, H., Guo, L., Liu, B.F. 2011. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system. Journal of Chromatography A, 1218, 171–177 43. Huang, S.H., Tan, W.H., Tseng, F.G., Takeuchi, S. 2006 . A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. Journal of Micromechanics and Microengineering 2006, 16, (11), 2336-2344. 44. Hugenholtz, P., Goebel, B.M., Pace, N.R. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180(18), 4765-4774. 45. Ikeda, Y., Iwakiri, S., Yoshimori, T. 2009. Development and characterization of a novel host cell DNA assay using ultra-sensitive fluorescent nucleic acid stain. Journal of pharmaceutical and biomedical analysis, 49(4), 997-1002. 46. Jen, C.-P., Huang, C.-T., Lu, Y.-H. 2009. Simulation of biochemical binding kinetics on the microfluidic biochip of fiber-optic localized plasma resonance (FO-LPR). Microelectronic Engineering, 86(4-6), 1505-1510. 47. Khandurina, J., McKnight, T.E., Jacobson, S.C., Waters, L.C., Foote, R.S., Ramsey, J.M. 2000. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem, 72(13), 2995-3000. 48. Kim, J., Wu, H., Hawthorne, L., Rafii, S., Laurence, J. 2001. Endothelial cell apoptotic genes associated with the pathogenesis of thrombotic microangiopathies: an application of oligonucleotide genechip technology. Microvascular research, 62(2), 83-93. 49. Lei, L., Zhou, Y.L., Chen, Y. 2009. Hydrodynamic focusing controlled microfluidic laser emission. Microelectronic Engineering, 86(4-6), 1358-1360. 50. Liu, S.P., Sa, C., Hua, X.L., Kong, L. 2006. Fluorescence quenching method for the determination of sodium carboxymethyl cellulose with acridine yellow or acridine orange. Spectrochimica Acta, Part A 64, 817–822 51. Lin, Y.C., Chang, S J., Su, Y.K., Shei, S.C. & Hsu, S.J. 2003. Inductively Coupled Plasma Etching of GaN Using Cl2/He Gases. Materials Science and Engineering B 98(1): 60-64. 52. Manz, A., Graber, N., Widmer, H.M. 1990. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1), 244-248. 53. McDonald, J.C., Whitesides, G.M. 2002. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of chemical research, 35(7), 491-499. 54. Muyzer, G., Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73(1), 127-141. 55. Nie, Z., Seo, M., Xu, S., Lewis, P.C., Mok, M., Kumacheva, E., Whitesides, G.M., Garstecki, P., Stone, H.A. 2008. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 5, 585-594. 56. Nisisako, T., Okushima, S., Torii, T. 2005. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter, 1(1), 23-27. 57. Reijans, M., Lascaris, R., Groeneger, A.O., Wittenberg, A., Wesselink, E., van Oeveren, J., Wit, E.d., Boorsma, A., Voetdijk, B., van der Spek, H., Grivell, L.A., Simons, G. 2003. Quantitative comparison of cDNA-AFLP, microarrays, and genechip expression data in Saccharomyces cerevisiae. Genomics, 82(6), 606-618. 58. Samanta, A., Paul, B.K., Guchhait, N. 2012. Photophysics of DNA staining dye Propidium Iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. Journal of Photochemistry and Photobiology B: Biology, 58-67. 59. Temmerman, R., Huys, G., Swings, J. 2004. Identification of lactic acid bacteria: culture-dependent and culture-independent methods. Trends in Food Science & Technology, 15(7), 348-359. 60. Trask, B. 1999. Fluorescence in situ hybridization. Genome analysis: A laboratory manual, 4, 303-413. 61. Travis, J., Kring, J. 2006. LabVIEW for Everyone: Graphical Programming Made Easy and Fun (National Instruments Virtual Instrumentation Series). Prentice Hall PTR. 62. Trevors, J.T. 2011. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells. J Microbiol Methods, 86(2), 266-73. 63. von Eiff, C. 2008. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. Int J Antimicrob Agents, 31(6), 507-10. 64. Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology, 3(5), 294-299. 65. Wacker, J., Parashar, V.K., Gijs, M.A.M. 2009. Influence of Oil Type and Viscosity on Droplet Size in a Flow Focusing Microfluidic Device. Procedia Chemistry, 1(1), 1083-1086. 66. Yang, C.H., Huang, K.S., Lin, P.W., Lin, Y.C. 2007. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles. Sensors and Actuators B: Chemical, 124(2), 510-516. 67. Yawata, Y., Toda, K., Setoyama, E., Fukuda, J., Suzuki, H., Uchiyama, H., Nomura, N. 2010. Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy. Journal of Bioscience and Bioengineering, 110(3), 377–380. 68. c2012 Chroma Technology CorporationR. http://test.chroma.com/product/custom-and-clearance/custom-inventory/dichroic-NC300089 69. c 2012 Life Technologies Corporation. http://zt.invitrogen.com/site/tw/zt/home/support/Product-Technical-Resources/Product-Spectra.1301dna.html 70. c 2012 Life Technologies Corporation. http://products.invitrogen.com/ivgn/product/P7581?ICID=search-product 71. c 2012 Life Technologies Corporation. http://zt.invitrogen.com/site/tw/zt/home/support/Product-Technical-Resources/Product-Spectra.1304dna.html 72. c2011 National Instruments Corporation. http://www.ni.com/ 73. c1996-2012 Newport Corporation. http://search.newport.com/?q=10BPF10-520/ 74. c1996-2012 Newport Corporation. http://search.newport.com/?q=10LWF-600-B 75. Copyright c 1999 - 2012 Thorlabs Coporation. http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=4&pn=PDA36A 76. Copyright c 1999 - 2012 Thorlabs Coporation. http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=897 77. 國家實驗研究院科技政策研究與資訊中心. http://cdnet.stpi.org.tw/techroom/market/nano/nano004.htm
摘要: 
在環境微生物與微生物生態學領域中,始終存在一個未能有效解決的問題:即在一個環境樣品中「存在微生物為何?」、「各種微生物的數量有多少?」及「細胞在做什麼?」。此方面之資訊不僅有助於解決環境微生物學與微生物生態學的基礎問題,更可應用於其他各種與微生物相關之領域,如生物合成、製藥、致病性菌株鑑定、食品加工及廢水之生物處理與土壤及地下水污染整治等。鑑於傳統微生物的鑑定,多採用分離培養鑑定,須長時間培養且環境中可培養之微生物有限;爾後發展之分子生物技術,如聚合酶連鎖反應(PCR);全細胞式定量法,如螢光原位雜交法(FISH),但仍然費時,且無法獲得全部資料。近年,新發展而成之技術,如流式細胞儀與生物晶片等,可快速鑑定微生物,但成本相對高昂,且無法同時鑑定多種微生物(n≧20)。為尋求更佳的微生物鑑定方法,本研究利用微機電工程之光微影製程,開發微流體生物晶片。本研究所開發之微流體生物晶片之微通道寬度與高度均在60 μm以下,利用微水珠封裝螢光分子染色之細菌,藉由雷射光激發及高靈敏度光學感應器擷取螢光訊號,再以類比轉數位介面卡及LabVIEWTM電腦軟體進行資料擷取統計與分析,期能達到快速鑑定與定量微生物之目的。

There is an unsolved problem in environmental ecology and environmental biology, i.e., a way to answer "who are they?", "how many are they of each species?" and "what are they doing?" for all the bacteria in an environmental sample. Those information can not only benefit basic research in environmental ecology and environmental microbiology but also assist other studies relating to microorganisms like biosynthesis, medicine, identity of pathogens, wastewater treatment, and soil and groundwater remediation.
Traditional way to identify microorganism is culturing methods, which are time consuming and unable to provide information on viable but not culturable bacteria. Thus, molecular biology methods have been developed such as polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), and so on. However, molecular biological methods are still time consuming and not of them is a portable technology. Recently, there are several kinds of new rapid technology being developed like flow cytometry, gene chip, and microarray. These technologies can identify microorganism in a fairly short period of time with high cost and still cannot answer the above research question.
Looking for much better answer for rapidly identifying microorganism, enumerating each species, and defining functional roles of each one of them, we employ photolithography, soft lithography, optical detection, and rapid data acquisition to develop micro-fluidic platform called Flow-Omics. Droplets which diameters are from 10 μm to 15 μm are formed in a specially-designed microfluidic chip. After labeling fluorescence molecules on each cell which has been packed in droplet, the intensity of fluorescence was detected and data are recorded by a data acquisition software, LabVIEWTM.
URI: http://hdl.handle.net/11455/5872
其他識別: U0005-2408201208133900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.