Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5874
標題: 添加金屬氧化物於質子交換膜燃料電池中之陽極鉑觸媒以提升對CO之容忍度
Adding metal oxides in Pt anode electrocatalysts for enhancing CO tolerance in proton exchange membrane fuel cells
作者: 郭蔓嬋
Guo, Mann-Charn
關鍵字: 質子交換膜燃料電池;PEMFC;前處理;CO容忍度;金屬氧化物;Pretreatment;CO tolerance;Metal oxides
出版社: 環境工程學系所
引用: [1] A. Su, Y.M. Ferng, J. Hou, T.L. Yu, Experimental and numerical investigations of the effects of PBI loading and operating temperature on a high-temperature PEMFC, International Journal of Hydrogen Energy, 37 (2012) 7710-7718. [2] D.T. Santa Rosa, D.G. Pinto, V.S. Silva, R.A. Silva, C.M. Rangel, High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions, International Journal of Hydrogen Energy, 32 (2007) 4350-4357. [3] S.-W. Perng, H.-W. Wu, Heat transfer in a PEMFC flow channel, Applied Thermal Engineering, 29 (2009) 3579-3594. [4] M. Zeroual, H.B. Moussa, M. Tamerabet, Effect of gas flow velocity in the channels of consumption reactants in a fuel cell type (PEMFC), Energy Procedia, 18 (2012) 317-326. [5] A. Brunetti, G. Barbieri, E. Drioli, A PEMFC and H2 membrane purification integrated plant, Chemical Engineering and Processing: Process Intensification, 47 (2008) 1081-1089. [6] S. Vengatesan, M.W. Fowler, X.-Z. Yuan, H. Wang, Diagnosis of MEA degradation under accelerated relative humidity cycling, Journal of Power Sources, 196 (2011) 5045-5052. [7] R.A. Silva, T. Hashimoto, G.E. Thompson, C.M. Rangel, Characterization of MEA degradation for an open air cathode PEM fuel cell, International Journal of Hydrogen Energy, 37 (2012) 7299-7308. [8] M.A. Gulmen, A. Sumer, A.E. Aksoylu, Adsorption properties of CO on low-index Pt3Sn surfaces, Surface Science, 600 (2006) 4909-4921. [9] S.M. Choi, M.H. Seo, H.J. Kim, E.J. Lim, W.B. Kim, Effect of polyoxometalate amount deposited on Pt/C electrocatalysts for CO tolerant electrooxidation of H2 in polymer electrolyte fuel cells, International Journal of Hydrogen Energy, 35 (2010) 6853-6862. [10] 林依杏, 改質鉑電極觸媒以提升質子交換膜燃料電池之CO抵抗能力 90 研究, 國立中興大學環境工程學系研究所碩士學位論文, (2009). [11] 衣寶廉, 燃料電池-原理與應用, 五南圖書出版股份有限公司, (2005). [12] 熊居正, 奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之研究, 中國文化大學材料科學與製造研究所碩士學位論文, (2004). [13] 本間琢也, 上松宏吉, 燃料電池:連北極熊都說讚的替代能源!, 瑞昇文化出版社, (2011). [14] M. Lin, Y. Cheng, S. Yen, Evaluation of PEMFC power systems for UPS base station applications, Journal of Power Sources, 140 (2005) 346-349. [15] R. Peters, H. Dusterwald, B. Hohlein, Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car, Journal of Power Sources, 86 (2000) 507-514. [16] S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review, Journal of Power Sources, 208 (2012) 96-119. [17] S.J. Wang, Y.F. Zhang, D. Shu, S.H. Tian, D.H. Mei, M. Xiao, Y.Z. Meng, Portable PEMFC stack using sulfonated poly (fluorenyl ether ketone) ionomer as membrane, International Journal of Hydrogen Energy, 37 (2012) 4539-4544. [18] F. Alcaide, G. Alvarez, J.A. Blazquez, P.L. Cabot, O. Miguel, Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes, International Journal of Hydrogen Energy, 35 (2010) 5521-5527. [19] Y. Oono, A. Sounai, M. Hori, Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells, Journal of Power Sources, 189 (2009) 943-949. [20] J. Kim, J.-E. Park, T. Momma, T. Osaka, Synthesis of Pd–Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction, Electrochimica Acta, 54 (2009) 3412-3418. 91 [21] M. Schulze, E. Gulzow, Fuel cells – Alkaline fuel cells | Overview performance and operational conditions, in: G. Editor-in-Chief: Jurgen (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 353-361. [22] S. Galbiati, A. Baricci, A. Casalegno, R. Marchesi, Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC, International Journal of Hydrogen Energy, 37 (2012) 2462-2469. [23] D. Lee, J. Bae, Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC, International Journal of Hydrogen Energy, 37 (2012) 422-435. [24] O.E. Herrera, D.P. Wilkinson, W. Merida, Anode and cathode overpotentials and temperature profiles in a PEMFC, Journal of Power Sources, 198 (2012) 132-142. [25] J.C. Yang, Y.S. Park, S.H. Seo, H.J. Lee, J.S. Noh, Development of a 50 kW PAFC power generation system, Journal of Power Sources, 106 (2002) 68-75. [26] C. Xu, A. Faghri, Water transport characteristics in a passive liquid-feed DMFC, International Journal of Heat and Mass Transfer, 53 (2010) 1951-1966. [27] R. Rashidi, P. Berg, I. Dincer, Performance investigation of a combined MCFC system, International Journal of Hydrogen Energy, 34 (2009) 4395-4405. [28] Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, Fuel flexibility study of an integrated 25kW SOFC reformer system, Journal of Power Sources, 144 (2005) 67-76. [29] 薛志鴻, 質子交換膜型燃料電池電極在CO存在下之阻抗分析, 國立成功大學化學工程學系碩士學位論文, (2003). [30] R. Gonzalez-Huerta, A. Guzman-Guzman, O. Solorza-Feria, Optimization of RuxSeyelectrocatalyst loading for oxygen reduction in a PEMFC, International Journal of Hydrogen Energy, 35 (2010) 12115-12119. [31] D.J. Ham, Y.K. Kim, S.H. Han, J.S. Lee, Pt/WC as an anode catalyst for 92 PEMFC: Activity and CO tolerance, Catalysis Today, 132 (2008) 117-122. [32] S.D. Thompson, L.R. Jordan, M. Forsyth, Platinum electrodeposition for polymer electrolyte membrane fuel cells, Electrochimica Acta, 46 (2001) 1657-1663. [33] F.-C. Wang, Y.-S. Chiang, Design and control of a PEMFC powered electric wheelchair, International Journal of Hydrogen Energy, (2012). [34] V. Paganin, E. Ticianelli, E. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells, Journal of Applied Electrochemistry, 26 (1996) 297-304. [35] P.H. Maheshwari, R. Singh, R. Mathur, Effect of the thickness of carbon electrode support on the performance of PEMFC, Journal of Electroanalytical Chemistry, (2012). [36] 廖怡萱, 質子交換膜燃料電池陰極觸媒合成、鑑定及活性測試, 元智大學化學工程與材料科學學系碩士學位論文, (2005). [37] S. Cha, W. Lee, Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on the membrane surface, Journal of the Electrochemical Society, 146 (1999) 4055. [38] P. Stonehart, Development of advanced noble metal‐alloy electrocatalysts for phosphoric acid fuel cells (PAFC), Berichte der Bunsengesellschaft fur Physikalische Chemie, 94 (1990) 913-921. [39] R. Imran Jafri, N. Sujatha, N. Rajalakshmi, S. Ramaprabhu, Au–MnO2/MWNT and Au–ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell, International Journal of Hydrogen Energy, 34 (2009) 6371-6376. [40] S. Litster, N. Djilali, Mathematical modelling of ambient air-breathing fuel cells for portable devices, Electrochimica Acta, 52 (2007) 3849-3862. [41] 廖振宇, 尹庚鳴, 質子交換膜燃料電池, 化工, 53 (2006) 2-9. [42] 李軒誠, 質子交換膜燃料電池研究—MEA的製程與應用, 國立中山大學機械工程研究所碩士學位論文, (2001). 93 [43] 胡興中, 觸媒原理與應用, 高立圖書有限公司, (1996). [44] O. Levenspiel, Chemical reactions engineering, Recherche, 67 (1998) 02. [45] A. Guha, W. Lu, T.A. Zawodzinski Jr, D.A. Schiraldi, Surface-modified carbons as platinum catalyst support for PEM fuel cells, Carbon, 45 (2007) 1506-1517. [46] M.A.M. Motchelaho, H. Xiong, M. Moyo, L.L. Jewell, N.J. Coville, Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe–Co supported on CaCO3: Correlation with Fischer–Tropsch catalyst activity, Journal of Molecular Catalysis A: Chemical, 335 (2011) 189-198. [47] M.L. Toebes, J.M.P. van Heeswijk, J.H. Bitter, A. Jos van Dillen, K.P. de Jong, The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers, Carbon, 42 (2004) 307-315. [48] I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43 (2005) 3124-3131. [49] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A: General, 253 (2003) 337-358. [50] G. Alvarez, F. Alcaide, P.L. Cabot, M.J. Lazaro, E. Pastor, J. Solla-Gullon, Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support, International Journal of Hydrogen Energy, 37 (2012) 393-404. [51] C.-Y. Lu, H.-H. Tseng, M.-Y. Wey, T.-W. Hsueh, The comparison between the polyol process and the impregnation method for the preparation of CNT-supported nanoscale Cu catalyst, Chemical Engineering Journal, 145 (2009) 461-467. [52] 陳俊寬, 鍛燒溫度及鍛燒氣體於製備過渡金屬鈷觸媒催化甲苯之研究, 國立中興大學環境工程學系研究所碩士學位論文, (2008). [53] C. Hu, Z. Bai, L. Yang, J. Lv, K. Wang, Y. Guo, Y. Cao, J. zhou, Preparation of high performance Pd catalysts supported on untreated multi-walled carbon nanotubes for formic acid oxidation, Electrochimica 94 Acta, 55 (2010) 6036-6041. [54] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58. [55] M. Lebert, M. Kaempgen, M. Soehn, T. Wirth, S. Roth, N. Nicoloso, Fuel cell electrodes using carbon nanostructures, Catalysis Today, 143 (2009) 64-68. [56] D. Bethune, C. Klang, M. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 363 (1993) 605 - 607. [57] L. Stobinski, B. Lesiak, L. Kover, J. Toth, S. Biniak, G. Trykowski, J. Judek, Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, Journal of Alloys and Compounds, 501 (2010) 77-84. [58] W. Shi, BaolianYi, M. Hou, Z. Shao, The effect of H2S and CO mixtures on PEMFC performance, International Journal of Hydrogen Energy, 32 (2007) 4412-4417. [59] H.F. Oetjen, V. Schmidt, U. Stimming, F. Trila, Performance data of a proton exchange membrane fuel cell using H2∕ CO as fuel gas, Journal of the Electrochemical Society, 143 (1996) 3838-3842. [60] D. Papageorgopoulos, M. Keijzer, J. Veldhuis, F. De Bruijn, CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts, Journal of The Electrochemical Society, 149 (2002) A1400. [61] A.C. Garcia, V.A. Paganin, E.A. Ticianelli, CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC, Electrochimica Acta, 53 (2008) 4309-4315. [62] F. Kadirgan, A. Kannan, T. Atilan, S. Beyhan, S. Ozenler, S. Suzer, A. Yorur, Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 34 (2009) 9450-9460. [63] W.Z. Hung, W.H. Chung, D.S. Tsai, D.P. Wilkinson, Y.S. Huang, CO tolerance and catalytic activity of Pt/Sn/SnO2 nanowires loaded on a carbon paper, Electrochimica Acta, 55 (2010) 2116-2122. 95 [64] F. Alcaide, G. Alvarez, P.L. Cabot, O. Miguel, A. Querejeta, Performance of carbon-supported PtPd as catalyst for hydrogen oxidation in the anodes of proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 35 (2010) 11634-11641. [65] 洪慧珊, 以旋轉圓盤電極分析燃料電池中陽極觸媒受CO毒化之影響, 元智大學化學工程研究所碩士學位論文, (2004). [66] H. Yu, Z. Hou, B. Yi, Z. Lin, Composite anode for CO tolerance proton exchange membrane fuel cells, Journal of power sources, 105 (2002) 52-57. [67] J.W. Kim, B. Lim, H.S. Jang, S.J. Hwang, S.J. Yoo, J.S. Ha, E. Cho, T.H. Lim, S.W. Nam, S.K. Kim, Size-controlled synthesis of Pt nanoparticles and their electrochemical activities toward oxygen reduction, International Journal of Hydrogen Energy, 36 (2011) 706-712. [68] M.A. Scibioh, S.K. Kim, E. Cho, T.H. Lim, S.A. Hong, H.Y. Ha, Pt-CeO2/C anode catalyst for direct methanol fuel cells, Applied Catalysis B: Environmental, 84 (2008) 773-782. [69] K. Grass, H.G. Lintz, The kinetics of carbon monoxide oxidation on tin (IV) oxide supported platinum catalysts, Journal of Catalysis, 172 (1997) 446-452. [70] Y. Chen, J. Wang, X. Meng, Y. Zhong, R. Li, X. Sun, S. Ye, S. Knights, Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells, International Journal of Hydrogen Energy, 36 (2011) 11085-11092. [71] R. Lin, C. Cao, H. Zhang, H. Huang, J. Ma, Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode, International Journal of Hydrogen Energy, (2012). [72] 張海艷, 林瑞, 曹春暉, 馬建新, 用於質子交換膜燃料电池抗CO的Pt-CeO2/C催化劑的製備和表徵, Chinese Journal of Catalysis, 32 (2011) 606-611. 96 [73] H.B. Yu, J.-H. Kim, H.-I. Lee, M.A. Scibioh, J. Lee, J. Han, S.P. Yoon, H.Y. Ha, Development of nanophase CeO2-Pt/C cathode catalyst for direct methanol fuel cell, Journal of power sources, 140 (2005) 59-65. [74] Q. He, S. Mukerjee, R. Zeis, S. Parres-Esclapez, M.J. Illan-Gomez, A. Bueno-Lopez, Enhanced Pt stability in MO2 (M=Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs, Applied Catalysis A: General, 381 (2010) 54-65. [75] A. Boulahouache, G. Kons, H.G. Lintz, P. Schulz, Oxidation of carbon monoxide on platinum-tin dioxide catalysts at low temperatures, Applied Catalysis A: General, 91 (1992) 115-123. [76] C. He, H. Kunz, J. Fenton, Selective oxidation of CO in hydrogen under fuel cell operating conditions, Journal of the Electrochemical Society, 148 (2001) A1116-A1124. [77] R. Lin, C. Cao, H. Zhang, H. Huang, J. Ma, Electro-catalytic activity of enhanced CO tolerant cerium-promoted Pt/C catalyst for PEM fuel cell anode, International Journal of Hydrogen Energy, 37 (2012) 4648-4656. [78] G. Wang, T. Takeguchi, T. Yamanaka, E.N. Muhamad, M. Mastuda, W. Ueda, Effect of preparation atmosphere of Pt–SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation, Applied Catalysis B: Environmental, 98 (2010) 86-93. [79] R. De Souza, A. Flausino, D. Rascio, R. Oliveira, E.T. Neto, M. Calegaro, M. Santos, Ethanol oxidation reaction on PtCeO2/C electrocatalysts prepared by the polymeric precursor method, Applied Catalysis B: Environmental, 91 (2009) 516-523. [80] G. Liu, H. Zhang, Y. Zhai, Y. Zhang, D. Xu, Z. Shao, Pt4 ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3 PO4 doped PBI, Electrochemistry communications, 9 (2007) 135-141. [81] A. Mekki, D. Holland, C. McConville, M. Salim, An XPS study of iron sodium silicate glass surfaces, Journal of Non-crystalline Solids, 208 (1996) 267-276. [82] Y. Miura, H. Kusano, T. Nanba, S. Matsumoto, X-ray photoelectron 97 spectroscopy of sodium borosilicate glasses, Journal of non-crystalline solids, 290 (2001) 1-14. [83] B.M. Reddy, P. Saikia, P. Bharali, L. Katta, G. Thrimurthulu, Highly dispersed ceria and ceria–zirconia nanocomposites over silica surface for catalytic applications, Catalysis Today, 141 (2009) 109-114. [84] M. Uo, A. Berglund, J. Cardenas, L. Pohl, F. Watari, M. Bergman, S. Sjoberg, Surface analysis of dental amalgams by X-ray photoelectron spectroscopy and X-ray diffraction, Dental Materials, 19 (2003) 639-644. [85] H.N. Wanka, G. Bilger, M.B. Schubert, CO2 plasma treatment of tin oxides, Applied Surface Science, 93 (1996) 339-348.
摘要: 
本研究將先探討質子交換膜燃料電池(PEMFC)膜電極組(MEA)的製備條件,再對近年來較新穎之奈米碳管(CNTs)碳擔體進行改質,比較經不同硝酸前處理程序後之擔體製備之觸媒催化活性之影響,最後選用添加CeO2、ZrO2、SnO2金屬氧化物(MOx)於鉑觸媒測試活性大小,並探討不同濃度CO對質子交換膜燃料電池的影響。將利用FESEM、TEM、XRD、BET及ESCA 進行觸媒特性分析。研究結果顯示,膜電極組經135 oC、240秒壓著後具有較佳的電化學活性。在擔體前處理方面,以硝酸在50 oC下處理兩天之奈米碳管擔體(CNTs-50oC-2d)製備之電極觸媒擁有較高的活性,推測其改質後擔體比表面積增加,有利於氣體分子擴散進入孔洞內與活性相反應。比較添加MOx結果顯示,在相同電壓操作下,以5%SnO2-5%Pt/C及5%ZrO2-5%Pt/C皆比未添加MOx具較佳之電化學活性,顯示添加MOx具催化效果,其中5%SnO2-5%Pt/C具較高的電流密度,有較佳之電化學效能。在CO毒化的部分,本研究以5%MOx-5%Pt/C、5%Pt/C與10%Pt/C電極觸媒進行100 ppm CO活性測試,研究結果顯示,添加SnO2及ZrO2具有提升電極觸媒對CO的容忍度,依序為5%ZrO2-5%Pt/C > 5%SnO2-5%Pt/C > 5%Pt/C > 5%CeO2-5%Pt/C;探討在不同CO濃度(0、25、50及100 ppm)於陽極燃料之容忍度測試,以5%ZrO2-5%Pt/C擁有較高之抗CO的能力。整體而言,添加MOx於Pt電極觸媒會提升電催化效果及CO容忍度。

The aim of this study is to discuss the preparation of the membrane-electrode assembly (MEA) by using carbon nanotubes (CNTs) in proton exchange membrane fuel cell (PEMFC). Different pretreatment procedures of carbon supports are also considered to evaluate the catalytic activity with various catalysts. Besides, the addition of metal oxides such as CeO2、ZrO2 and SnO2 are investigated to enhance the electrocatalytic activity and the tolerance of different CO concentrations. All catalysts are characterized by means of FESEM, TEM, XRD, BET and ESCA.
The experimental results show that the effects of various preparation methods on the MEA to determine the best operating parameters. The 240 seconds hot-press with temperature is 135 oC has been selected for further experiments. Additionally, the investigation of the catalytic activity compared with different pretreatment procedures for catalyst support indicates that CNTs pretreated with nitric acid at 50 oC for two days (CNTs-50 oC-2d) that are supported active metals has higher catalytic activity than others. It is supposed that CNTs-50oC-2d supports have higher surface area provided more active sites and the gas molecules may easily diffuse into the pores to be reacted. Moreover, the electrocatalytic activities by using several catalysts included 5%SnO2-5%Pt/C, 5%ZrO2-5%Pt/C at the same voltage are higher than those without adding any MOx, and 5%SnO2-5%Pt/C is the effectiveness catalyst found after testing .On the other hand, it was reported that the CO tolerance of electrocatalyst was also enhanced by the addition of SnO2 and ZrO2 under the CO concentration is 100 ppm. The CO tolerance are in the following order as 5%ZrO2-5%Pt/C > 5%SnO2-5%Pt/C > 5%Pt/C > 5%CeO2-5%Pt/C. The effect of various concentrations of CO (0、50 and 100 ppm) shows that 5%ZrO2-5%Pt/C catalyst displays a better CO tolerance than the others. Consequently, the electrocatalytic activity and CO tolerance of catalysts are both enhanced while MOx added with Pt.
URI: http://hdl.handle.net/11455/5874
其他識別: U0005-1407201220465500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.