Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5877
標題: 現地溶膠-凝膠法製備PPO-Silica混合基材薄膜對氫分離與二氧化碳捕獲之應用
Preparation of PPO/Silica mixed matrix membrane through in-situ sol-gel method for H2 purification and CO2 capture
作者: 莊國良
Chuang, Kuo-Liang
關鍵字: 氣體分離;gas separation;二氧化碳;混合基材薄膜;現地溶膠-凝膠法;熱處理;carbon dioxide;mixed matrix membranes;in-situ sol-gel method;heat treatment
出版社: 環境工程學系所
引用: [1] World Energy Outlook 2012, in: International Energy Agency (Ed.), 2012. [2] Annual Energy Outlook 2012 With Projections to 2035, in: U.S.D. Energy (Ed.), U.S. Energy Information Administration, 2012. [3] 我國燃料燃燒 CO2 排放統計與分析, in: 經濟部能源局 (Ed.), 2011. [4] 永續能源政策綱領, in: 經濟部能源局 (Ed.), 2008. [5] A.F. Ismail, N. Ridzuan, S.A. Rahman, Latest development on the membrane formation for gas separation, J. Sci. Technol., 24 (2002) 1025-1043. [6] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science, 26 (2001) 853-893. [7] L.M. Robeson, Polymeric Membranes for Gas Separation, in: K.H.J.B. Editors-in-Chief: , W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick (Eds.) Encyclopedia of Materials: Science and Technology (Second Edition), Elsevier, Oxford, 2001, pp. 7629-7632. [8] A.S. Colin, E.K. Sandra, W.S. Geoff, Carbon dioxide separation through polymeric membrane systems for flue gas applications, Recent Patents on Chemical Engineering, 1 (2008) 52-66. [9] S.P. Nunes, Organic-Inorganic Membranes, in: M. Reyes, M. Miguel (Eds.) Membrane Science and Technology, Elsevier, 2008, pp. 121-134. [10] A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, 1.11 - Basic Aspects in Inorganic Membrane Preparation, in: D. Editor-in-Chief: Enrico, G. Lidietta (Eds.) Comprehensive Membrane Science and Engineering, Elsevier, Oxford, 2010, pp. 217-252. [11] A.S. Augustine, I.P. Mardilovich, N.K. Kazantzis, Y. Hua Ma, Durability of PSS-supported Pd-membranes under mixed gas and water–gas shift conditions, Journal of Membrane Science, 415–416 (2012) 213-220. [12] D. Mendes, V. Chibante, J.-M. Zheng, S. Tosti, F. Borgognoni, A. Mendes, L.M. Madeira, Enhancing the production of hydrogen via water–gas shift reaction using Pd-based membrane reactors, International Journal of Hydrogen Energy, 35 (2010) 12596-12608. [13] M. Mirfendereski, M. Sadrzadeh, T. Mohammadi, Effect of synthesis parameters on single gas permeation through T-type zeolite membranes, International Journal of Greenhouse Gas Control, 2 (2008) 531-538. [14] C. Song, T. Wang, H. Jiang, X. Wang, Y. Cao, J. Qiu, Gas separation performance of C/CMS membranes derived from poly(furfuryl alcohol) (PFA) with different chemical structure, Journal of Membrane Science, 361 (2010) 22-27. [15] 劉得成, PMMA/zeolite 4A 複合薄膜之氣體分離, 中原大學化學工程學系碩士論文, (2004). [16] 黃盟欽, 碳分子篩/氧化鋁複合膜之製備及其特性研究, 國立成功大學化學工程研究所碩士論文, (2004). [17] S.G. Anshu, W.J. Koros, Air separation properties of flat sheet homogeneous pyrolytic carbon membranes, Journal of Membrane Science 174 (2000) 177-188. [18] F. Macedonio, E. Curcio, E. Drioli, Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study, Desalination, 203 (2007) 260-276. [19] G. Obuskovic, S. Majumdar, K.K. Sirkar, Highly VOC-selective hollow fiber membranes for separation by vapor permeation, Journal of Membrane Science, 217 (2003) 99-116. [20] F. Hamad, K.C. Khulbe, T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes, Journal of Membrane Science, 256 (2005) 29-37. [21] L. Shao, B.T. Low, T.-S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31. [22] J. Gilron, A. Soffer, Knudsen diffusion in microporous carbon membranes with molecular sieving character, Journal of Membrane Science, 209 (2002) 339-352. [23] G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective, Journal of Colloid and Interface Science, 314 (2007) 589-603. [24] M.B. Hagg, J.A. Lie, A. Lindbrathen, Carbon molecular sieve membranes - A promising alternative for selected industrial applications, Advanced Membrane Technology, 984 (2003) 329-345. [25] M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199-244. [26] M. Mulder, Basic Principles of Membrane Technology, in, Kluwer Acadenic Publoshers, 1996. [27] M.B. HAGg, J.A. Lie, A. LindbrAThen, Carbon Molecular Sieve Membranes, Annals of the New York Academy of Sciences, 984 (2003) 329-345. [28] S. Dominguez-Dominguez, A. Berenguer-Murcia, E. Morallon, A. Linares-Solano, D. Cazorla-Amoros, Zeolite LTA/carbon membranes for air separation, Microporous and Mesoporous Materials, 115 (2008) 51-60. [29] X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, D. Yin, Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties, Journal of Membrane Science, 348 (2010) 181-189. [30] C. Zeng, L. Zhang, X. Cheng, H. Wang, N. Xu, Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes, Separation and Purification Technology, 63 (2008) 628-633. [31] P.S. Rao, M.Y. Wey, H.H. Tseng, I.A. Kumar, T.H. Weng, A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application, Microporous and Mesoporous Materials, 113 (2008) 499-510. [32] H.H. Tseng, I.A. Kumar, T.H. Weng, C.Y. Lu, M.Y. Wey, Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes, Desalination, 240 (2009) 40-45. [33] S.H. Han, G.W. Kim, C.H. Jung, Y.M. Lee, Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials, Desalination, 233 (2008) 88-95. [34] S.W. Rutherford, D.D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, 3 (1997) 283-312. [35] A.F. Ismail, A.R. Hassan, Formation and characterization of asymmetric nanofiltration membrane: Effect of shear rate and polymer concentration, Journal of Membrane Science, 270 (2006) 57-72. [36] C.H. Lau, P. Li, F. Li, T.-S. Chung, D.R. Paul, Reverse-selective polymeric membranes for gas separations, Progress in Polymer Science, 38 (2013) 740-766. [37] A.W. Thornton, T. Hilder, A.J. Hill, J.M. Hill, Predicting gas diffusion regime within pores of different size, shape and composition, Journal of Membrane Science, 336 (2009) 101-108. [38] P. Kofinas, R.E. Cohen, A.F. Halasa, Gas permeability of polyethylene/poly(ethylene-propylene) semicrystalline diblock copolymers, Polymer, 35 (1994) 1229-1235. [39] 楊逸帆, 土壤有機質芳香性對非離子有機化合物分佈行為之影響, in: 環境工程研究所, 國立中央大學, 2003. [40] M.-H. Tsai, S.-L. Huang, S.-J. Liu, C.-J. Chen, P.-J. Chen, S.-H. Chen, Synthesis and properties of poly(urethane-imide) interpenetrating network membranes, Desalination, 233 (2008) 191-200. [41] Z.P. Smith, D.F. Sanders, C.P. Ribeiro, R. Guo, B.D. Freeman, D.R. Paul, J.E. McGrath, S. Swinnea, Gas sorption and characterization of thermally rearranged polyimides based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), Journal of Membrane Science, 415–416 (2012) 558-567. [42] G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites, Current Opinion in Colloid & Interface Science, 17 (2012) 132-140. [43] V.R.G. V R Gowariker, N. V. Viswanathan,Jayadev Sreedhar, Polymer Science, New Age International (P) Limited, 1986. [44] H. Gies, Studies on clathrasils: VII. A new clathrate compound of silica: Synthesis, crystallographic, and thermal properties, Journal of Inclusion Phenomena, 2 (1984) 275-278. [45] G. ODIAN, PRINCIPLES OF POLYMERIZATION, John Wiley & Sons, Inc., Hoboken, New Jersey., Canada, 2004. [46] The Glass Transition, in, Polymer Science Learning Center Department of Polymer Science The University of Southern Mississippi, 2005. [47] T.H. Lee, F.Y.C. Boey, K.A. Khor, On the determination of polymer crystallinity for a thermoplastic PPS composite by thermal analysis, Composites Science and Technology, 53 (1995) 259-274. [48] R.F. Boyer, Mechanical motions in amorphous and semi-crystalline polymers, Polymer, 17 (1976) 996-1008. [49] H.-H. Tseng, K. Shih, P.-T. Shiu, M.-Y. Wey, Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane, Journal of Membrane Science, 405 (2012) 250-260. [50] R.M. Huertas, C.M. Doherty, A.J. Hill, A.E. Lozano, J. de Abajo, J.G. de la Campa, E.M. Maya, Preparation and gas separation properties of partially pyrolyzed membranes (PPMs) derived from copolyimides containing polyethylene oxide side chains, Journal of Membrane Science, 409–410 (2012) 200-211. [51] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment, Journal of Membrane Science, 294 (2007) 147-158. [52] P.S.O. Patricio, J.A. de Sales, G.G. Silva, D. Windmoller, J.C. Machado, Effect of blend composition on microstructure, morphology, and gas permeability in PU/PMMA blends, Journal of Membrane Science, 271 (2006) 177-185. [53] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400. [54] C. Camacho-Zuniga, F.A. Ruiz-Trevino, M.G. Zolotukhin, L.F. del Castillo, J. Guzman, J. Chavez, G. Torres, N.G. Gileva, E.A. Sedova, Gas transport properties of new aromatic cardo poly(aryl ether ketone)s, Journal of Membrane Science, 283 (2006) 393-398. [55] Y. Yampolskii, Polymeric Gas Separation Membranes, Macromolecules, 45 (2012) 3298-3311. [56] D.E. Fain, Mixed gas separation technology using inorganic membranes, Membrane Technology, 2000 (2000) 9-13. [57] A. Car, W. Yave, C. Stropnik, K.V. Peinemann, Pebax/polyethylene glycol blend thin film composite membranes for CO2 separation: Perfor mance with mixed gases Separation and Purification Technology, 62 (2008) 110-117. [58] R. Han, S. Zhang, C. Liu, Y. Wang, X. Jian, Effect of NaA zeolite particle addition on poly(phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance, Journal of Membrane Science, 345 (2009) 5-12. [59] F. Moghadam, M.R. Omidkhah, E. Vasheghani-Farahani, M.Z. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology, 77 (2011) 128-136. [60] Z. Yang, W. Ding, Y. Zhang, X. Lu, Y. Zhang, P. Shen, Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst, International Journal of Hydrogen Energy, 35 (2010) 6239-6247. [61] 徐國財、張立德, 奈米複合材料, 五南出版社, 2004. [62] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Separation and Purification Technology, 55 (2007) 281-291. [63] M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati, Performance studies of mixed matrix membranes for gas separation: A review, Separation and Purification Technology, 75 (2010) 229-242. [64] J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science, 314 (2008) 123-133. [65] S.S. Hosseini, Y. Li, T.-S. Chung, Y. Liu, Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles, Journal of Membrane Science, 302 (2007) 207-217. [66] D. Gomes, S.P. Nunes, K.V. Peinemann, Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites, Journal of Membrane Science, 246 (2005) 13-25. [67] M. Iwata, T. Adachi, M. Tomidokoro, M. Ohta, T. Kobayashi, Hybrid sol–gel membranes of polyacrylonitrile–tetraethoxysilane composites for gas permselectivity, Journal of Applied Polymer Science, 88 (2003) 1752-1759. [68] Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, Study on polyimide/TiO2 nanocomposite membranes for gas separation, Desalination, 146 (2002) 49-55. [69] A.F. Ismail, K. Li, From Polymeric Precursors to Hollow Fiber Carbon and Ceramic Membranes, 13 (2008) 81-119. [70] H. Rao, Z. Zhang, C. Song, T. Qiao, S. Xu, Gas separation properties of siloxane/polydimethylsiloxane hybrid membrane containing fluorine, Separation and Purification Technology, 78 (2011) 132-137. [71] X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang, Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture, Journal of Membrane Science, 362 (2010) 265-278. [72] B. Vaughan, J. Peter, E. Marand, M. Bleha, Transport properties of aluminophosphate nanocomposite membranes prepared by in situ polymerization, Journal of Membrane Science, 316 (2008) 153-163. [73] Y.H. Teow, A.L. Ahmad, J.K. Lim, B.S. Ooi, Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method, Desalination, 295 (2012) 61-69. [74] R. Mahajan, W.J. Koros, Mixed matrix membrane materials with glassy polymers. Part 1, Polymer Engineering & Science, 42 (2002) 1420-1431. [75] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, Journal of Membrane Science, 211 (2003) 311-334. [76] D. Şen, H. Kalıpcılar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes, Journal of Membrane Science, 303 (2007) 194-203. [77] A.M.W. Hillock, S.J. Miller, W.J. Koros, Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification, Journal of Membrane Science, 314 (2008) 193-199. [78] Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 41 (2010) 806-819. [79] A.C. Miller, J.C. Berg, Effect of silane coupling agent adsorbate structure on adhesion performance with a polymeric matrix, Composites Part A: Applied Science and Manufacturing, 34 (2003) 327-332. [80] T. Suzuki, Y. Yamada, Synthesis and gas transport properties of novel hyperbranched polyimide-silica hybrid membrane, Journal of Applied Polymer Science, (2012) 316-322. [81] S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes, Separation and Purification Technology, 90 (2012) 162-172. [82] A. Ajayaghosh, Donor-acceptor type low band gap polymers: polysquaraines and related systems, Chemical Society Reviews, 32 (2003) 181-191. [83] L.L. Hench, J.K. West, The sol-gel process, Chemical Reviews, 90 (1990) 33-72. [84] G.C. Hoang, Pore-size control of silica gels in acidic water conditions using sol-gel processing, Journal of the Korean Physical Society, 31 (1997) 227-230. [85] L.P. Singh, S.K. Bhattacharyya, G. Mishra, S. Ahalawat, Functional role of cationic surfactant to control the nano size of silica powder, Appl Nanosci, 1 (2011) 117-122. [86] D.m. Qi, Y.z. Bao, Z.x. Weng, Z.m. Huang, Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization, Polymer, 47 (2006) 4622-4629. [87] F. Hamad, K.C. Khulbe, T. Matsuura, Characterization of gas separation membranes prepared from brominated poly (phenylene oxide) by infrared spectroscopy, Desalination, 148 (2002) 369-375. [88] M. Khayet, J.P.G. Villaluenga, M.P. Godino, J.I. Mengual, B. Seoane, K.C. Khulbe, T. Matsuura, Preparation and application of dense poly(phenylene oxide) membranes in pervaporation, Journal of Colloid and Interface Science, 278 (2004) 410-422. [89] Q.G. Zhang, Q.L. Liu, F.F. Shi, Y. Xiong, Structure and permeation of organic-inorganic hybrid membranes composed of poly(vinyl alcohol) and polysilisesquioxane, Journal of Materials Chemistry, 18 (2008) 4646-4653. [90] E. Favre, Polymeric membranes for gas separation, in: D. Editor-in-Chief: Enrico, G. Lidietta (Eds.) Comprehensive Membrane Science and Engineering, Elsevier, Oxford, 2010, pp. 155-212. [91] W.J. Firouzi M, Slippage and viscosity predictions in carbon micropores and their influence on CO2 and CH4 transport, The Journal of Chemical Physics, 138 (2013) 1-12. [92] Y. Fu, J.R. Lakowicz, Spectroscopy: A closer look at polymer annealing, Nature, 472 (2011) 178-179. [93] E.W. FISCHER, Effect of annealing and temperature on the morphological structure of polymers, Annealing and Polymer Morphology, (1972) 113-131. [94] I. Musselman, J. Kenneth Balkus, J. Ferraris, Mixed-matric membranes for CO2 and H2 gas separations using metal-organic framework and mesoporus hybrid silicas, in, 2009, pp. Medium: ED. [95] H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, Thermally rearranged (TR) polymer membranes for CO2 separation, Journal of Membrane Science, 359 (2010) 11-24. [96] C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel, 96 (2012) 15-28. [97] E. Karatay, H. Kalıpcılar, L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes, Journal of Membrane Science, 364 (2010) 75-81. [98] O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane, Journal of Membrane Science, 378 (2011) 359-368. [99] J. Ahmad, M.B. Hagg, Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent, Separation and Purification Technology, 115 (2013) 190-197. [100] B. Zornoza, C. Tellez, J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation, Journal of Membrane Science, 368 (2011) 100-109. [101] E.V. Perez, K.J. Balkus Jr, J.P. Ferraris, I.H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, Journal of Membrane Science, 328 (2009) 165-173. [102] T.H. Weng, H.H. Tseng, G.L. Zhuang, M.Y. Wey, Development of CMS/Al2O3-supported PPO composite membrane for hydrogen separation, International Journal of Hydrogen Energy, 38 (2013) 3092-3104. [103] T.H. Weng, H.H. Tseng, M.Y. Wey, Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation, International Journal of Hydrogen Energy, 35 (2010) 6971-6983.
摘要: 
混合基材薄膜(Mixed matrix membranes,MMMs)一直是近年來廣受研究的一種新興材料,主要透過有機與無機兩種材料特性的結合,具有良好的機械性、熱性質和優異的滲透分離效能。然而,無機與有機材料間的結合情形是影響整體薄膜滲透與分離效能的重要因子,因此如何使兩相間產生理想的黏著性(adhesion)為近年來的研究重點。故本研究將利用現地溶膠-凝膠程序與後熱處理方式來製備PPO-silica的混合基材薄膜以改善兩相 的黏著情形。研究中亦將探討無機材silica的添加量對薄膜物理特性之影響,並透過電子顯微鏡(FESEM)、熱重分析儀(TGA)、X光繞射分析儀(XRD)及傅立葉紅外線轉換光譜儀(FTIR),觀察混合基材薄膜之外觀結構、熱穩定性、結晶結構和官能基等特性,並透過單一氣體滲透實驗進行效能評估。
研究結果顯示,以現地溶膠-凝膠法添加silica或將薄膜熱處理後,能夠增加薄膜的熱穩定性與改變薄膜的結晶特性,但不會對薄膜結構型態產生嚴重的缺陷。而對於氣體滲透之影響上,在未熱處理時,薄膜的滲透通量會隨著silica的添加量增加而提高,但在添加量為10wt.%時會因為silica有團聚現象,出現非選擇能力之間隙,使得H2/CO2的選擇率受到限制,當經過熱處理後,使高分子結構再重組,減少兩相間的缺陷,同時能夠增加高分子的結晶結構特性,因此在silica添加量為5wt.%時,其H2/CO2的分選效能增加至3.6左右。

Mixed matrix membranes (MMMs) are considered as a potential candidate for membrane separation techniques due to their attractive mechanical strength, thermal stability and superior perm-selectivity properties. In general, the MMMs consist of organic polymer and inorganic particle phases. However, the permselectivity properties of MMMs are greatly influenced by both the dispersing degree of nano-particles in the continuous phase (polymers) and the interfacial adhesion between the inorganic and organic components. Therefore, the problems MMMs faced are challenging to achieve an optimized interface structure and forming composite membrane with an ultrathin and defect-free mixed matrix skin by novel preparation technology.
In this study, the PPO-silica MMMs was synthesized through in-situ sol-gel method, and the effect of silica loading weight and heat treatment on the gas separation performance was investigated. The gas permeation was studied and the morphological, crystalline structure, thermal stability, and functional group of MMMs was obtained using SEM, TGA, XRD, and FTIR, respectively.
The results indicate that using in-situ sol-gel method to synthesize PPO-silica MMMs is beneficial for improving nano-filler dispersion. The permeability towards H2, CO2, O2, N2, and CH4 can be enhanced without increasing selectivity slightly. Further, an improvement in adhesion between both phase and crystal structure of the polymer matrix has been observed by the recrystallization process after heat treatment, which is beneficial for diffusivity of lower molecular weight of gas components. Thus, an enhanced H2 permeability from 51.26 to 117.78 GPU and the H2/CO2 separation ratio ca. 3.6 was observed from 5 wt. % PPO-silica MMMs.
URI: http://hdl.handle.net/11455/5877
其他識別: U0005-1906201314232600
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.