Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5878
標題: 現場快速篩檢與傳統實驗室檢驗對土壤中碳氫化合物測定之差異探討
Exploring the difference between on-site assessment and traditional laboratory measurement on hydrocarbon polluted soil
作者: 劉美春
Liu, Mei-Chun
關鍵字: 快速篩檢;BTEX;苯;甲苯;乙苯;二甲苯;總石油碳氫化合物;光離子偵測器;火焰離子偵測器;TPH;PID;FID
出版社: 環境工程學系所
引用: 中文部分 Donald L.Sparks編者,王明光譯,環境土壤化學,五南圖書出版股份有限公司,2005。 陳尊賢、許正一合著,台灣的土壤,遠足文化出版社,2002。 張尊國,台灣地區土壤污染現況與整治政策分析,2002。 王智龍、毛文明、鄭麒榮、林慧珍、林啟燦土壤中總石油碳氫化合物檢測方法應用現況之探討,環境分析化學研討會,2009.05。 李以彬、陳元武、李秋萍、洪文宗、翁英明,環境污染物快速篩選技術-以土壤中戴奧辛為例,行政院環境保護署環境檢驗所20週年所慶研討會專刊,第119-126頁,2010。 沈之敏、葉俊鴻、林啟文BTEX分解菌之固定化顆粒生物降解特性探討,中華民國環境工程學會土壤與地下水研討會,2010。 車明道加油站地下儲槽洩漏與防震規範之探討台灣土壤及地下水環境保護協會簡訊,第二十六期第15-19頁,2007。 林啟燦,USEPA 9074濁度快速檢驗法應用於土壤中TPH污染篩檢之探討,台灣土壤及地下水環境保護協會簡訊,第十九期第18-22頁,2006。 侯瑋妮、張雅姿、許瀚巍、王明智、劉保文不同土壤有機質之石油碳氫化合物之生物復研究,中華民國環境工程學會土壤與地下水研討會,2010。 柯志文、王明智、劉保文、潘柏岑、蘇煌欽、侯瑋妮、張雅姿、王亮傑土壤中有機質多寡對石油碳氫化合物降解影響,中華民國環境工程學會第二十一屆年會暨第七屆土壤與地下水研討會,1999。 康文尚,論我國土壤及地下水污染整治法之污染責任人及其責任範圍,工業污染防治,第82期(2002)。 葉玉珍、莊士群、潘復華、鄭先佑、蔡坤龍、高月裡、曹明浙以XRF直接定量底泥中鉛鎳鋅銅砷及鉻成分之檢測技術,環境分析化學研討會,2011。 行政院環保署,加油站土壤及地下水污染調查計畫(第四期)(甲)期末報告,2009.04。 行政院環保署,全國十年以上加油站及大型儲槽潛在污染源調查計畫(乙),2003.08。 行政院環保署,中北部地區十年以上加油站潛在污染源調查計畫,2004.08。 行政院環保署,“油品類儲槽系統快速場址調查及評估技術參考手冊”,2006.09。 經濟部工業局,“石油碳氫化合物土壤及地下水污染預防與整治技術手冊”,2007.11。 土壤採樣方法(NIEA S102.61B) (環保署網站,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL。 土壤中總石油碳氫化合物檢測方法-氣相層析儀/火焰離子化偵測法(NIEA S703.61B)撰寫。(環保署網站,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL。 土壤及事業廢棄物中揮發性有機物檢測方法─氣相層析質譜儀法(NIEA M711.01C)撰寫。(環保署網站,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL。 經濟部工業局網站,hppt://www.moeaidb.gov.tw。 環境保護署網站,hppt://www.epa.gov.tw。 環境保護署土壤及地下水污染整治基金管理會,http://sgw.epa.gov.tw/public/0102.asp。 廠牌:RAE型號:Mini RAE 2000 VOC偵測器操作手冊,2006。 廠牌:Thermo型號:TVA-1000B偵測器操作手冊,2006。 西文部分 M.R.T Palmroth, P.E.P. Koskinen, U. Münster, J.A. Puhakka & J. Pichtel, Microbial activity and characterization during hydrocarbon phytoremediation. Chuang, J. C., Van Emon, J. M., Chou, Y.-L., Junod, N., Finegold, J. K., Wilson, N. K., 2003. Comparison of immunoassay and gas chromatography–mass spectrometry for measurement of polycyclic aromatic hydrocarbons in contaminated soil. Analytica Chimica Acta 486 pp. 31-39. Watkin, G. E., Calabrese, E. J., and Harris, R. H., 1991. Health risks associated with the remediation of contaminated soil, hydrocarbon contaminated soil and groundwater, Lewis publishers, Inc., Michigan, pp. 293~300. Lambert, P., Fingas, M., and Goldthorp, M., 2001, An evaluation of field total petroleum hydrocarbon (TPH) system. Journal of Hazardous Materials 83, pp. 65-81. Robbins, G. A., 2000. Expedited Site Assessment, UST Site Investigation Guidance for a New Millenium, Connecticut Department of Environmental Protection. Ministry for the Environment New Zealand, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, October 1999. ASTM, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, E 1527-05,2005. Slater D. and J. Huw 1999. Environmental risk assessment and the environment agency, Journal of Hazardous Materials 65, pp. 77-91. Lambert, P., Fingas, M., and Goldthorp, M., 2001. An evaluation of field total petroleum hydrocarbon (TPH) systems. Journal of Hazardous Materials 83, pp. 65-81. U.S. Environmental Protection Agency 1997. Expedited site assessment tools for underground storage tank sites: A guide for regulators, EPA 510-B-97-001. U.S. Environmental Protection Agency 1998. Turbidmetric screening method for total recoverable petroleum hydrocarbons In soil, SW846, Method 9074. U.S. Environmental Protection Agency 1999. Exposure Factor Handbook. U.S.EPA. “Method 4030Soil Screening for Petroleum Hydrocarbons by Immunoassay, ”pp.1-17,1996. Strategic Diagnostics INC. “Ensys Petro Soil Test Kit 7042301, ”pp.1-9,1997. NEMI (National Environmental Method Index) https://www.nemi.gov.
摘要: 
國內加油站的站齡超過十年以上,就有可能因老舊腐蝕失修、地層下陷變動及操作管理不當等原因,導致儲槽管線破裂毀損,造成油品滲漏,進而污染土壤及地下水,其主要污染物質為石油碳氫化合物。
污染物質的現場快速篩測,是使用攜帶式偵測器至現場直接測試,其為一種初步評估污染的方法,擁有縮短操作時間及降低成本的優點,然而其和傳統分析不同的是傳統分析須將污染物質採樣後攜回實驗室,而後進行苯、甲苯、乙苯、二甲苯 (上述四種合稱BTEX)及TPH分析,屬於檢測耗時、成本昂貴及技術門檻較高的分析技術。本研究的目的在於評估探討現場快速篩測與傳統分析方法,測定加油站污染場址的土壤,分析其碳氫化合物之濃度差異,藉以瞭解現場篩測之測值,是否仍須進一步配合傳統分析,並評估其適用程度。
本研究以光離子偵測器(PID)與火焰離子偵測器(FID)的現場篩測數值與實驗室測值的BTEX及TPH之數據結果加以比較探討,分別建立其相關性以供參考。樣品收集包括39個加油站共112個測點,研究結果顯示以現場PID測值為1000 ppm作為篩選BTEX的依據似乎較能代表污染現況,同時當PID測值接近1500 ppm時,便可能發現有接近管制標準的苯存在,而當現場PID測值接近3500 ppm時,顯示TPH濃度便可能有50 %超出管制標準;此外,當FID測值小於5000 ppm,實驗室測值之BTEX濃度便可能不會違反管制標準;當FID測值為5000〜150000 ppm時,有接近10 %的樣品可能在攜回實驗室後完全測不到BTEX化合物,建議當其現場FID測值濃度大於400 ppm時,須攜回實驗室進一步分析確認TPH濃度是否會違反管制標準;本研究發現以現場FID進行分析時,若測值偏高或偏低皆可能與實驗室TPH的數據出現明顯差距。推測土壤樣品質地、水份、有機質含量等會影響測值,FID測值對BTEX較不靈敏,建議以PID測值為參考依據會較具有代表性。

In Taiwan most of gas stations have been used for more than 10 years, and may cause the oil contamination in soil and groundwater due to pipelines corrosion of storage tanks, changes in land subsidence, operation of mismanagement or other reasons. According to the reports, the petroleum hydrocarbons are the main pollutions of oil contamination being identified.
The preliminary method of detection of the oil contamination is to use the on-site carrier-detector, and its benefits are to reduce the time and cost of operation. However, the traditional analysis of BTEX (benzene, toluene, ethyl benzene, and xylene) and TPH were required to bring back to the laboratory after sampling, and its drawbacks include time-consuming, expensive, and analytical techniques of high technical threshold. The purpose of this study is to investigate differences in analysis of concentrations between the rapid-screen detection on site and traditional analysis in laboratory in order to understand whether further sampling and analysis in laboratory after the rapid-screen detection on site.
In this study, the detection values on site were detected by using photoionization detector (PID) and flame ionization detector (FID), and were compared with the laboratory method of BTEX. Samples collected from 39 gas stations (112 points) were analyzed in this study. Results indicated a PID value of 1000 ppm could fairly represent possible BTEX contamination on site. Meanwhile, when the PID value was close to 1500 ppm, possible benzene violation of control standard could be identified. Furthermore, when PID value was closed to 3500 ppm, and the TPH may have a 50 % possibility to violate the control standards. On the other hand, when FID measurement was below 5000 ppm, BTEX concentrations were found to below control standards. However, when FID at the concentration of 5000 to 150000ppm, there is still a 10 % possibility that no BTEX could be measured in the lab. Subsequently, Based on these findings, we suggest that a on-site FID value of 400ppm should be used as indication of further sampling for detailed lab analysis on TPH. Also, when relatively high or low FID values were identified on site, significant differences between FID values and lab TPH measurements could be found. Even though measurements conducted in this study could be affected by soil properties, moisture, content of organics etc, results from this study indicated that the FID method is not sensitive to detect BTEX, and PID method is more sensitive and representative.
URI: http://hdl.handle.net/11455/5878
其他識別: U0005-2108201221560000
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.