Please use this identifier to cite or link to this item:
標題: 界面活性劑淋洗整治EDC-tar污染之評估
Evaluation of Surfactant Flushing for Remediating EDC-tar Contamination
作者: 謝承霖
Hsieh, Cheng-Lin
關鍵字: 氯化有機溶劑;chlorinated solvent;二氯乙烷焦油;質量傳輸;動力模式;地下水污染;EDC-tar;mass transfer;kinetics;groundwater contamination
出版社: 環境工程學系所
引用: 1. Jensen, S.; Lange, R.; Berge, G.; Palmork, K. H.; Renberg, L., On the chemistry of EDC-tar and its biological significance in the sea. The Royal Society of London 1975, 189, (1096), 333-346. 2. Gold, L. S. Human exposures to ethylene dichloride.; Cold Spring Harbor Laboratory Publication: 1980; pp 209-225. 3. 行政院主計總處, 101年1-11月國內石化基本原料生產量增4.8%. 行政院主計總處-國情統計通報 2013. 4. USEPA, Final Listing Background Document for the Chlorinated Aliphatics Listing Determination (Proposed Rule). EPA-68-W98-025, Office of Solid Waste, Washington, D.C. 2000. 5. USEPA, Scientic and technical assessment report on vinyl chloride and polyvinyl chloride. EPA-600/6-75-75-004, U.S. Environmental Protection Agency Office of Research and Development 1975. 6. UNEP; Athens, UNEP: Strategic Action Programme to Address Pollution from Land-based Activities. MAP Technical Reports 1998, 119. 7. Rannug, U.; Ramel, C., Mutagenicity of waste products from vinyl chloride industries. Journal of Toxicology and Environmental Health 1977, 2. 8. 行政院環保署, 有害事業廢棄物認定標準. 行政院環保署 2013. 9. 行政院環保署, 事業廢棄物貯存清除處理方法及設施標準 行政院環保署 2013. 10. 行政院環保署, 土壤污染管制標準. 行政院環保署 2013. 11. 行政院環保署, 地下水污染管制標準. 行政院環保署 2013. 12. 行政院環保署, 石油化學業放流水標準. 行政院環保署 2013. 13. 行政院環保署, 飲用水水質標準. 行政院環保署 2013. 14. 行政院環保署, 飲用水水源水質標準. 行政院環保署 2013. 15. 行政院環保署, 海洋放流管線放流水標準. 行政院環保署 2013. 16. 行政院環保署, 公告之毒性化學物質一覽表. 行政院環保署 2013. 17. Khan, F. I.; Husain, T.; Hejazi, R., An overview and analysis of site remediation technologies. Journal of Environmental Management 2004, 71, (2), 95-122. 18. USEPA, Superfund Remedy Report. EPA-542-R-10-004, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 2010. 19. Diane S. Roote, P. G., In Situ Flushing. Technology Overview Report, Ground-Water Remediation Technologies Analysis Center 1997. 20. 梁振儒, 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會: 2007. 21. USEPA, In-situ chemical oxidation. EPA/600/R-06/072 Office of Research and Development National Risk Management 2006. 22. Siegrist, R. L.; Crimi, M.; Brown, R. A., In Situ Chemical Oxidation: Technology Description and Status. Springer Science+Business Media, New York.: 2011; p 1-32. 23. 行政院環保署, 土壤及地下水受比水重非水相液體污染廠址整治技術選取、系統設計要點與注意事項參考手冊. 行政院環保署: 2008. 24. Nadim, F.; Hoag, G. E.; Liu, S.; Carley, R. J.; Zack, P., Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. Journal of Petroleum Science and Engineering 2000, 26, (1–4), 169-178. 25. Gan, S.; Lau, E. V.; Ng, H. K., Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials 2009, 172, (2–3), 532-549. 26. West, C. C.; Harwell, J. H., Surfactants and subsurface remediation. Environmental Science & Technology 1992, 26, (12), 2324-2330. 27. Mulligan, C. N.; Yong, R. N.; Gibbs, B. F., Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 2001, 60, (1–4), 371-380. 28. Myers, D., Surfaces, Interfaced, and Colloids: Princples and Applications. second ed.; Wiley-VCH: New York 1999; p 270-273. 29. Zhou, M.; Rhue, R. D., Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization†. Environmental Science & Technology 2000, 34, (10), 1985-1990. 30. Powers, S. E.; Abriola, L. M.; Weber, W. J., An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. Water Resources Research 1992, 28, (10), 2691-2705. 31. Pennell, K. D.; Pope, G. A.; Abriola, L. M., Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environmental Science & Technology 1996, 30, (4), 1328-1335. 32. Hauswirth, S. C.; Birak, P. S.; Rylander, S. C.; Miller, C. T., Mobilization of manufactured gas plant tar with alkaline flushing solutions. Environmental Science & Technology 2011, 46, (1), 426-433. 33. Dong, M.; Ma, S.; Liu, Q., Enhanced heavy oil recovery through interfacial instability: A study of chemical flooding for Brintnell heavy oil. Fuel 2009, 88, (6), 1049-1056. 34. Kuhlman, M. I.; Greenfield, T. M., Simplified soil washing processes for a variety of soils. Journal of Hazardous Materials 1999, 66, (1–2), 31-45. 35. Ramsburg, C. A.; Pennell, K. D., Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells. Environmental Science & Technology 2002, 36, (14), 3176-3187. 36. Hofstee, C.; Gutierrez Ziegler, C.; Trotschler, O.; Braun, J., Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction. Journal of Contaminant Hydrology 2003, 67, (1–4), 61-78. 37. Rosen, M. J., Micelle Formation by Surfactants. In Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc.: 2004; pp 105-177. 38. Rosen, M. J., Solubilization by Solutions of Surfactants: Micellar Catalysis. In Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc.: 2004; pp 178-207. 39. Holland, P. M.; Rubingh, D. N., An Overview. In Mixed Surfactant Systems, American Chemical Society: 1992; Vol. 501, pp 2-30. 40. Rosen, M. J., Molecular Interactions and Synergism in Mixtures of Two Surfactants. In Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc.: 2004; pp 379-414. 41. Rosen, M. J., Adsorption of Surface-Active Agents at Interfaces: The Electrical Double Layer. In Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc.: 2004; pp 34-104. 42. Kim, I. S.; Park, J.-S.; Kim, K.-W., Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry 2001, 16, (11–12), 1419-1428. 43. Suchomel, E. J.; Ramsburg, C. A.; Pennell, K. D., Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants. Journal of Contaminant Hydrology 2007, 94, (3–4), 195-214. 44. Shiau, B.-J.; Sabatini, D. A.; Harwell, J. H., Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants. Ground Water 1994, 32, (4), 561-569. 45. Boopathy, R., Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. Journal of Hazardous Materials 2002, 92, (1), 103-114. 46. Zhu, H.; Aitken, M. D., Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science & Technology 2010, 44, (19), 7260-7265. 47. Liu, Z.; Jacobson, A. M.; Luthy, R. G., Biodegradation of naphthalene in aqueous nonionic surfactant systems. Applied and Environmental Microbiology 1995, 61, 145-151. 48. Zhao, B.; Zhu, L.; Li, W.; Chen, B., Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere 2005, 58, (1), 33-40. 49. Torres, L. G.; Rojas, N.; Bautista, G.; Iturbe, R., Effect of temperature, and surfactant''s HLB and dose over the TPH-diesel biodegradation process in aged soils. Process Biochemistry 2005, 40, (10), 3296-3302. 50. Song, M.; Bielefeldt, A. R., Toxicity and inhibition of bacterial growth by series of alkylphenol polyethoxylate nonionic surfactants. Journal of Hazardous Materials 2012, 219–220, (0), 127-132. 51. Paria, S., Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science 2008, 138, (1), 24-58. 52. Guo, H.; Liu, Z.; Yang, S.; Sun, C., The feasibility of enhanced soil washing of p-nitrochlorobenzene (pNCB) with SDBS/Tween80 mixed surfactants. Journal of Hazardous Materials 2009, 170, (2–3), 1236-1241. 53. Zhou, W.; Zhu, L., Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research 2008, 42, (1–2), 101-108. 54. Chi, F.-H., Remediation of polycyclic aromatic hydrocarbon-contaminated soils by nonionic surfactants: column experiments. Environmental Engineering Science 2011, 28, (2), 139-145. 55. Bai, G.; Brusseau, M. L.; M. Miller, R., Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. Journal of Contaminant Hydrology 1998, 30, (3–4), 265-279. 56. Pennell, K. D.; Jin, M.; Abriola, L. M.; Pope, G. A., Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. Journal of Contaminant Hydrology 1994, 16, (1), 35-53. 57. Shiau, B.; Sabatini, D.; Harwell, J., Chlorinated solvent removal using food grade surfactants: column studies. Journal of Environmental Engineering 2000, 126, (7), 611-621. 58. Ramsburg, C. A.; Pennell, K. D., Experimental and economic assessment of two surfactant formulations for source zone remediation at a former dry cleaning facility. Ground Water Monitoring & Remediation 2001, 21, (4), 68-82. 59. Yeh, C. K.-J.; Peng, S.-L.; Hsu, I. Y., Co-surfactant of ethoxylated sorbitan ester and sorbitan monooleate for enhanced flushing of tetrachloroethylene. Chemosphere 2002, 49, (4), 421-430. 60. Li, Z.; Hanlie, H., Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation. Water Research 2008, 42, (3), 605-614. 61. Tsai, T., Kao, C., Surampalli, R., and Liang, S., Treatment of fuel-oil contaminated soils by biodegradable surfactant washing followed by Fenton-like oxidation. Environmental Engineering 2009, 135, (10), 1015-1024. 62. Khalladi, R.; Benhabiles, O.; Bentahar, F.; Moulai-Mostefa, N., Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials 2009, 164, (2–3), 1179-1184. 63. Abriola, L. M.; Drummond, C. D.; Hahn, E. J.; Hayes, K. F.; Kibbey, T. C. G.; Lemke, L. D.; Pennell, K. D.; Petrovskis, E. A.; Ramsburg, C. A.; Rathfelder, K. M., Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the bachman road site. 1. site characterization and test design. Environmental Science & Technology 2005, 39, (6), 1778-1790. 64. Sabatini, D. A.; Harwell, J. H.; Hasegawa, M.; Robert, K., Membrane processes and surfactant-enhanced subsurface remediation: results of a field demonstration. Journal of Membrane Science 1998, 151, (1), 87-98. 65. Cheng, H.; Sabatini, D. A., Separation of organic compounds from surfactant solutions: a review. Separation Science and Technology 2007, 42, (3), 453-475. 66. Clark II, C. J., Reduction of a field generated waste microemulsion by electrolytic addition. Journal of Environmental Engineering and Science 2005, 4, (1), 83-87. 67. Eriksson, T.; Borjesson, J.; Tjerneld, F., Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology 2002, 31, (3), 353-364. 68. Hait, S.; Moulik, S., Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. Journal of Surfactants and Detergents 2001, 4, (3), 303-309. 69. Little, R. C., Correlation of surfactant hydrophile-lipophile balance (HLB) with solubility parameter. Journal of Colloid and Interface Science 1978, 65, (3), 587-588. 70. Liang, C.; Lee, I. L.; Hsu, I. Y.; Liang, C.-P.; Lin, Y.-L., Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere 2008, 70, (3), 426-435. 71. Zimmerman, J. B.; Kibbey, T. C. G.; Cowell, M. A.; Hayes, K. F., Partitioning of ethoxylated nonionic surfactants into nonaqueous-phase organic liquids: Influence on Solubilization Behavior. Environmental Science & Technology 1998, 33, (1), 169-176. 72. Pennell, K. D.; Adinolfi, A. M.; Abriola, L. M.; Diallo, M. S., Solubilization of dodecane, tetrachloroethylene, and 1,2-dichlorobenzene in micellar solutions of ethoxylated nonionic surfactants. Environmental Science & Technology 1997, 31, (5), 1382-1389. 73. Paria, S.; Yuet, P. K., Solubilization of naphthalene by pure and mixed surfactants. Industrial & Engineering Chemistry Research 2006, 45, (10), 3552-3558. 74. Lu, S.; Wu, J.; Somasundaran, P., Micellar evolution in mixed nonionic/anionic surfactant systems. Journal of Colloid and Interface Science 2012, 367, (1), 272-279. 75. Taylor, T. P.; Pennell, K. D.; Abriola, L. M.; Dane, J. H., Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses: 1. Experimental studies. Journal of Contaminant Hydrology 2001, 48, (3–4), 325-350. 76. Levenspiel, O., Chemical Reaction Engineering. 3rd ed.; John Wiley & Sons: New York, 1999. 77. Knox, R. C.; Sabatini, D. A.; Harwell, J. H.; Brown, R. E.; West, C. C.; Blaha, F.; Griffin, C., Surfactant remediation field demonstration using a vertical circulation well. Ground Water 1997, 35, (6), 948-953. 78. Payne, F. C.; Quinnan, J. A.; Potter, S. T., Remediation Hydraulics. 2008, 83-106. 79. Childs, J. D.; Acosta, E.; Knox, R.; Harwell, J. H.; Sabatini, D. A., Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems. Journal of Contaminant Hydrology 2004, 71, (1–4), 27-45. 80. Marszall, L., Cloud point of mixed ionic-nonionic surfactant solutions in the presence of electrolytes. Langmuir 1988, 4, (1), 90-93. 81. Dutkiewicz, E.; Jakubowska, A., Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid and Polymer Science 2002, 280, (11), 1009-1014. 82. 阿里巴巴, 2013. 83. 台灣自來水公司, 2013. 84. 台灣銀行牌告匯率, 2013.
Ethylene dichloride tar (EDC-tar)是氯乙烯單體製程所產生的焦油狀廢棄物,棕黑色且具臭味的重質非水相液體。此廢棄物成份大部分皆為單鍵及雙鍵的氯化脂肪族碳氫化合物,但是仍約有20%來自無法蒸餾之物質。本研究探討採用界面活性劑淋洗技術用以整治EDC-tar之可行性。首先,分析確認EDC-tar之成份組成,並針對此一污染物篩選合適之界面活性劑。研究過程探討界面活性劑單獨/混合使用及溶液pH對EDC-tar溶解度之影響,再藉由管柱淋洗實驗了解污染物去除之機制以及評估整治效益,並針對洗出廢水以鹽析法進行EDC-tar之分離,達到整治之目的。
EDC-tart成分分析結果顯示,1,1,2-三氯乙烷及1,2-二氯乙烷是EDC-tar之主要成份,佔EDC-tar總值量之57%。界面活性劑篩選試驗結果顯示,混合SDS/Tween 80兩種界面活性劑,當其濃度採用8 mM/16 mM之配比時對EDC-tar不僅有較佳的溶解能力(溶解度約32000 mg/L vs. 4000 mg/L於純水中),且此溶液之表面張力亦較純水之數值為低(SDS/Tween 80: 24.6 dyne/cm vs.純水: 70 dyne/cm),此外,當以氫氧化鈉調整溶液至鹼性條件時,能進一步提昇EDC-tar之溶解度。管柱實驗結果顯示,SDS之添加能提昇EDC-tar於管柱中之移動性,當使用鹼性界面活性劑淋洗時,其呈現較佳之移除效率。進一步藉由淋洗動力模式分析,成功模擬本實驗之EDC-tar藉由溶解機制之去除量(預測移除量/實際移除量= 0.89 ± 0.1)。本研究另針對EDC-tar/界面活性劑溶液分離之可行性予以探討,結果顯示EDC-tar能夠藉由鹽析作用進行分離,當氯化鈉的濃度達20 wt%時能夠分離濃縮溶液中約90%的EDC-tar,使其沈降於容器底部,有利於收集淋洗溶液中之EDC-tar。本研究之成果可作為整治EDC-tar污染土壤及地下水之技術選項。

Ethylene dichloride tar (EDC-tar) is a tar-like waste originated from the process of vinyl chloride production. This tar is a dense non-aqueous liquid with brown-black color and bad smells. EDC-tar is consisted of ~20% of undistilled components and the major constituents include chlorinated aliphatic and aromatic hydrocarbons. This study investigated the feasibility of surfactant enhanced aquifer remediation technique for treating EDC-tar contaminated aquifer. Initial experiments were to identify the components of EDC-tar consitituents and to select an appropriate surfactant to remediate EDC-tar contamination. This study investigated the potential to enhance solubility of EDC-tar using single surfactant or mixed surfactants systems also and the effect of solution pH. Furthermore, effectiveness and mechanisms of EDC-tar removed were examined in column studies. Regarding treatment of EDC-tar flushing solution, “salting out” effect was employed for separation of EDC-tar from contaminant/surfactant mixed solution. Results of EDC-tar qualitative analysis shows that 1,1,2-trichloroethane and 1,2-dichloroethane are main components of EDC-tar. The proportion of these two compounds in EDC-tar is 57%. Results of surfactants screening test show that SDS/Tween 80 at the mixing molar ratio of 8/16 exhibited better EDC-tar solubility (32000 mg/L vs. 4000 mg/L in pure water) and lower surface tension (24 dyne/cm vs. 70 dyne/cm in pure water). In addition, alkaline pH enhanced EDC-tar solubility comparing to that in neutral condition. Column studies show that addition of SDS enhanced EDC-tar mobility. Alkaline surfactant, SDS/Tween 80 with mixing molar ratio of 8 mM/16 mM, show better removals in column studies than other experimental conditions evaluated. Analysis of mass transfer kinetic behavior shows high correlation to actual mass removal of EDC-tar by solubilization mechanism. The ratio of simulated mass removed/actual mass removed is 0.89 ± 0.1. The separation of EDC-tar/surfactant mixed solution results show that EDC-tar can be separated by adding 20% of NaCl by weight (i.e., salting out effects). Ninety percent of EDC-tar could be separated and sunk at the bottom of vessel, which can be used as a way to collect EDC-tar from solution. The results obtained in this study would be helpful as a reference for remediation of EDC-tar contamination.
其他識別: U0005-1806201316180400
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.