Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5890
標題: 能源作物大豆應用於受重金屬污染休耕農地之可行性評估
Assessment of the Feasibility of Planting Soybean in the Heavy Metals Contaminated Fallow Farmland
作者: 陳雪莉
Chen, Hsueh-Li
關鍵字: 生物濃縮係數;bioconcentration factor;生質柴油;鎘;重金屬;大豆;biofuel;cadmium;heavy metal;soybean
出版社: 環境工程學系所
引用: 王云雉。2008。利用休耕地種植能源作物對區域經濟之影響—以台南縣為例。國立中興大學,應用經濟學系所碩士論文。 王銀波,劉黔蘭。1997。翻轉法應用於農田土壤污染改善之研究。行政院環境保護署。計畫編號:EPA-86-E3H1-09-04。 台灣省環境保護處。1999.06。台灣省河川水體分類之檢討與修訂。 台北市環境保護局。2006。94年度台北市生質柴油替代燃料試用補助計畫(期末報告)。 台南市環境保護局。2007。台南市生質柴油道路試行計畫(期末報告)。 台灣農家要覽。2005。農業委員會臺灣農家要覽增修訂三版策劃委員會編著。 先探投資週刊。2010。1591期。102-104頁。 行政院環保署。水污染源管制資料管理系統。 行政院環保署。1990.09。有效防治台灣地區水污染訂定合理放流水標準之研究--電鍍業。 行政院環保署。1995.06。水質模式開發與總量管制策略之研究 子題四:總量管制相關措施之擬定。 行政院環保署。1995.07。水質模式開發與總量管制策略之研究 (二) 子題三:河川流域水質管理之研究。 行政院環保署。2002。污染農地灌溉渠道底泥及水質重金屬污染調查計畫。 行政院農委會。2000.5。農業用水總量清查報告。 行政院農委會。2008。農業統計年報。 林宜暉。2007。柴油引擎添加生質柴油後污染的排放與動力分析。國立中正大學,機械工程所碩士論文。 李育明。2007。認識綠色能源:「地球暖化,該怎麼辦?」系列之二。新自然主義有限公司。 李唐。2008。生質柴油向前走。能源報導。2008年4月。 李嘉榮。2008。不同生質柴油添加比例對柴油引擎排放空氣污染物影響研究。朝陽科技大學,環境工程與管理系碩士論文。 邱銖寬。1989。四種作物對鎘處理之反應。國立臺灣大學,農業化學研究所碩士論文。 吳奇璋。2008。我國推動生質燃料發展刻不容緩。能源報導。2008年4月。 吳政錡。2006。能源作物產製生質柴油之生命週期評估-以大豆、油菜籽為例。國立台北大學,自然資源與環境管理研究所碩士論文。 周義欽。2008。屏東縣重金屬污染易擴散區能源作物適栽性初探。國立屏東科技大學,環境工程與科學系所碩士論文。91頁。 姚蘭香。1993。臺灣地區大豆生產潛力分析。國立中興大學,土壤學系碩士論文。 莊國立。2007。台灣生質柴油應用在柴油車輛對排放特性和引擎性能影響之研究。國立臺灣大學,環境工程學研究所碩士論文。 陳民忠。2009。生質能源政策對永續發展之探討—以台灣地區生質柴油發展為例。國立台北科技大學,工業工程與管理研究所碩士論文。 陳庚鳳。1985。溫度與光照對大豆產量及種子品質之影響。國立臺灣大學,農藝研究所碩士論文。 陳尊賢,李達源。1993。台灣地區重要土系中重金屬全量之調查。行政院環境保護署委託計畫 (計畫編號:EPA-82-E3H1-09-01(1))。 陳尊賢,李達源,賴朝明,鍾仁賜,陳建得,莊愷瑋,陳柏青,賴鴻裕。2006。彰化縣農地污染控制場址現地植生復育重金屬污染土壤之可行性評估計畫。行政院環境保護署委託計畫 (計畫編號:EPA-94-GA12-03-A212)。期末報告。408頁。 陳賜章。2002。台南縣受重金屬污染農地土壤復育成效之追蹤。國立屏東科技大學,環境工程與科學系碩士論文。 陳琦玲。2006。鎘污染農地轉作能源作可行性評估之研究。行政院農業委員會計畫(計畫編號:95農科-1.3.1-糧-ZG)。 曾漢文。2008。生質柴油製造之經濟可行性評估—以台北縣為例。私立中原大學,國際貿易研究所碩士論文。 張坤森。2003。台灣地區重金屬污染土壤檢測基準探討、緊急應變及整治技術評估。第一屆國際環境災害及緊急應變技術研討會論文集。國立雲林科技大學國際會議廳。2003年11月13日。雲林縣。臺灣。教育部補助經費。 張秀蓮。2004。利用大豆及紅豆做為鎘污染指標植物之研究。國立臺灣大學,植物病理與微生物學研究所碩士論文。 張尊國,徐玉標,徐貴新。1994。灌溉水質管理策略之研究。台灣省環保處。 張珮錡,2001,「改善灌溉水質受污染之措施研究」,私立中原大學,土木工程研究所碩士論文。 張雅筑。2008。以生質燃料及能源作物對遭受重油污染土壤進行植物修復之研究。國立中山大學,海洋環境及工程學系研究所碩士論文。 楊明德。2010。臺灣發展生質柴油選擇之探討。國立高雄第一科技大學,運籌管理所碩士論文。 楊盛行。2007。認識生質能源──訪問台大生技系。環境資訊電子報。 詹翌羚。2007。台灣農地轉作生質能作物之能值評估-以台南縣為例。國立台北大學,都市計劃研究所碩士論文。 萬桂竹。1995。鎘污染的指標植物與植物對鎘的吸收。國立臺灣大學,植物病蟲害學系碩士論文。 經濟部水利署中區水資源局。2008。水資源利用現況。2008年8月。 經濟部水利署。2010。各標的用水量統計。 彰化農田水利會。95及96年度監視點水質複驗報表。 彰化縣環境保護局。2003。彰化縣東西二圳污染源調查及管制推動計畫。 彰化縣環境保護局。2005。彰化縣土壤及地下水污染調查及查證工作計畫。 彰化縣環境保護局。96年度彰化縣東西二圳河川水質監測結果。 彰化縣環境保護局。2007。93年度彰化縣生質柴油替代燃料試用計畫。執行單位:鴻圖工程有限公司。 彰化縣環境保護局。2008。95年度彰化縣東西二圳重金屬污染物污染探討及加嚴排放標準研訂計畫。執行單位:亞新工程顧問股份有限公司。 彰化縣環境保護局。2011。98年度彰化縣農地土壤重金屬污染控制場址改善工作計畫期末報告。規劃單位:能碩工程顧問股份有限公司。 彰化縣政府。2009。重金屬污染休耕農地推廣多目標平地造林可行性研究。執行單位:國立臺灣大學。 監察院。2002。監察院公報。2397卷。頁51-60。12月18日。 劉黔蘭,王銀波,廖悅玲,吳翠如,黃瓊惠,孫振誠,李建樺。1998。台灣中部兩期水稻與土壤中重金屬之研究──三年計畫總報告。台灣省農林廳委託計畫。 劉世旺。2006。台灣地區生質柴油發展潛能評估。國立高雄師範大學,工業科技教育學系碩士論文。 蕭丁齊。2006。台灣地區種植能源作物之可行性研究-以生質柴油為例。國立中興大學,應用經濟學系所碩士論文。 賴清意。2008。臺灣地區生質柴油潛在供給量之研究-以臺南縣學甲鎮種植能源作物為例。國立中興大學,應用經濟學系所碩士論文。 賴鴻裕,陳尊賢。2003。重金屬污染土壤之植生復育技術與案例分析。pp.167-201。第八屆土壤污染整治研討會論文集。陳尊賢(主編)。國立臺灣大學理學院思亮館國際會議廳。2003年8月25日。台北市。臺灣。行政院環保署補助經費。 賴鴻裕,蘇紹瑋,林淳純,陳尊賢。2007。酸洗法處理後重金屬污染土壤地力回復之研究。科技學刊。16(1): 39-46 賴鴻裕。2011。重金屬污染土壤植生復育—近五年研究之回顧。第十五屆土壤與地下水污染整治研討會。國立臺灣大學凝態科學物理館2樓國際會議廳。2011年6月29日。台北市。臺灣。 謝文章。2008。國內發展生質柴油潛力評估。國立台北大學,自然資源與環境管理研究所碩士論文。 Alloway, B.J. 1995. Heavy metals in soils. Blackie Academic and Professional, Glasgow, UK. Arao, T., N. Ae, M. Sugiyama and M. Takahashi. 2003. Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247-253. Archibald, D., E. Marinates, W. Buckley, J. Clarke and G. Taylor. 2001. A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of durum wheat (Triticum turgidum L.). Eupytica 117: 175-182. Baker, A.J.M., S.P. McGrath, R.D. Reeves and J.A.C. Smith. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. pp. 85-107. In: Terry N. and Banuelos G. (eds.). Phytoremediation of Contaminated Soil & Water. CRC Press LLC, FL, USA. Benavides, M.P., S.M. Gallego and M.L. Tomaro. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17:21-34. Blaylock, M.J., D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents, Environ. Sci. Technol. 31:860-865. Blaylock, M. and J. Huang. 2000. Phytoextraction of metals: pp. 53-69. In: Raskin, I., and B. Ensley (eds.). Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley & Sons Inc., NY, USA. Cataldo, D.A., T.R. Garland and R.E. Wildung. 1981. Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68:835-839. Cataldo, C.D., T.R. Garland and R.E. Wildung. 1983. Cadmium uptake, kinetics in intact soybean plants. Plant Physiol. 73:844-848. Chaney, R. 1983. Plant uptake of inorganic waste constituents. pp. 50-76. In: Parr, P., P. Marsh, and J. Kla (eds.). Land Treatment of Hazardous Wastes. Noyes Data, Park Ridge, NJ, USA. Chaney, R.L., Y.M. Li, J.S. Angle, A.J.M. Baker, R.D. Reeves, S.L. Brown, F.A. Homer, M. Malik and M. Chin. 1999. Improving metal-hyperaccumulators wild plants to develop commercial phytoextraction systems: Approaches and progress. pp. 129-158. In: N. Terry, and G. Banuelos (eds.) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL. Chen, Y.X., Y.F. He, Y. Yang, Y.L. Yu, S.J. Zheng, G.M. Tian, Y.M. Luo and M.H. Wong. 2003. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere 50:781-787. Chen, Z.S., J.G. Lee and C.J. Liu. 2000. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41:235-242. Chen, H.L., C.J. Lu and H.Y. Lai. 2010a. Amendments of activated carbon and biosolid on the growth and cadmium uptake of soybean grown in potted Cd-contaminated soils. Water Air Soil Poll. 209:307-314. Chen, H.L., H.Y. Lai, S.M. Wang, Y.C. Kuo and C.J. Lu. 2010b. Effect of biosolid and the Cd/Pb interaction on the growth and Cd accumulation of Brassica rapa. grown in the Cd-contaminated soils. Water Air Soil Poll. 206:385-394. Chugh, L.K. and S.K. Sawhney. 1999. Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium. Plant Physiol. Biochem. 37:297-303. Chlopecka, A. 1996. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Sci. Total Environ. 188:253−262. Codex Alimentarius Commission. 2001. Report of the 33rd session of the Codex Committee on food additives and contaminants. The Netherlands: Hague, 285 pp. Cunningham, S.D., W.R. Berti and J.W. Huang. 1995. Phytoremediation of contaminated soils. Trends Biotech. 13:393-397. Dickinson, N.M., A.J.M. Baker, A. Doronila, S. Laidlaw and R.D. Reeves. 2009. Phytoremediation of inorganics: Realism and synergies. Int. J. Phytoremediat. 11:97-114. EPA/Taiwan. 2002. Method code No: NIEA S321.62C; Environmental Protection Administration of Taiwan ROC, Taipei, Taiwan. Faur-Brasquet, C., Z. Reddad and K. Kadirvelu. 2002. Modeling the adsorption of metal ions ( Cu+2, Ni+2, Pb+2 ) onto ACCs using surface complexation models. Applied Surface Sci. 196:356-365. Gee, G.W. and J.W. Bauder. 1986. Partical-size analysis. pp.383-412. In: A. Klute et al. (ed.) Methods of soil analysis. Part 1. Physical and Mineralogical Method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Glass, D.J. 2000. Economic potential of phytoremediation. pp. 15-31. In: I. Raskin, and B. Ensley (eds.) Phytoremediation of Toxic Metals. John Wiley & Sons Inc., NY, USA. Grant, C.A., W.T. Buckley, L.D. Baily and F. Selles. 1998. Cadmium accumulation in crops. Can. J. Plant Sci. 78:1-17. Greger, M. and T. Landberg. 1999. Use of willow in phytoremediation. Int. J. Phytoremediat. 1:115-123. Harmon, M.E. and K. Lajtha. 1999. Analysis of detritus and organic horizon for mineral and organic constitutes. pp.143-165. In: G.P. Robertson, D.C. Coleman, C.S. Bledsoe, and P. Sollins (eds.) Standard soil methods for long-term ecological research. Oxford University Press, Inc., NY, USA. Hart, J.J., R.M. Welch, W.A. Norvell, L.A. Sullivan and L.V. Kochian. 1998. Characterization of cadmium binding, uptake and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 116:1413-1420. Heuillet, E., A. Moreau, S. Halpern, N. Jeanne and S. Puiseax-Dao. 1986. Binding to a thiol-molecule in vacuoles of Dunaliella bioculata contaminated with CdCl2, electron probe microanalysis. Biol. Cell 58:79-86. Hsiao, K.H., P.H. Kao and Z.Y. Hseu. 2007. Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. J. Hazard. Mater. 148:366-376. Hu, Z.Y., P.Q. Tan, X.Y. Yan and D.M. Lou. 2008. Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy 33:1654-1658. Jun, R. and T. Ling. 2012. Increase of Cd accumulation in five poplar (Populus L.) with different supply levels of Cd. Int. J. Phytoremediat. 14:101-113. Jung, M.C. and I. Thornton. 1996. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochem. 11:53-59. Kabata-Pendias, A. and H. Pendias. 2001. Trace elements in plants. pp. 73-98. In: A. Kabata-Pendias, and H. Pendias (eds.) Trace Element in Soils and Plants. 3rd Ed. CRC Press, FLa, USA. Keller, C. and D. Hammer. 2004. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environ. Pollut. 131:243-254. Krevešan, S., S. Kiršek, J. Kandrac, N. Petrovic and D.J. Kelemen. 2003. Dynamics of cadmium distribution in the intercellular space and inside cells in soybean roots, stems and leaves. Biol. Plant 46:85-88. Krupa, Z. 1999. Cadmium against higher plant photosynthesis—a variety of efforts and where do they possible come from. Zeitsschrift fuer Naturforschung C 54:723-729. Kochian, L.V. 1990. Mechanisms of micronutrient uptake and translocation in plants. pp. 251-270. In: Mortvedt, J.J. (ed.) Micronutrients in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, USA. Krotz, R.M., B.P. Evangelou and G.J. Wanger. 1989. Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiol. 91:780-787. Kumar, P. B. A. N., V. Dushenkov, H. Motto and I. Raskin. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29:1232-1238. Lai, H.Y. and Z.S. Chen. 2004. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421-430. Lai, H.Y. and Z.S. Chen. 2005. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere 60:1062-1071. Lai, H.Y. and Z.S. Chen. 2007. Multi-dose applying EDTA to decrease the potential groundwater contamination using rainbow pink (Dianthus chinensis) for enhanced phytoextraction. Desalination 210:236-247. Lai, H.Y., K.W. Juang and Z.S. Chen. 2010. Large-area experiment on uptake of metals by twelve plants growing in soil contaminated with multiple metals. Int. J. Phytoremediat. 12:785-797. Lavado, R.S. 2006. Concentration of potentially toxic elements in field crops grown near and far cities of the Pamaps (Argentina). J. Environ. Manag. 80:116-119. Li, J.T., B. Liao, Z.Y. Dai, R. Zhu and W.S. Shu. 2009. Phytoremediation of Cd-contaminated soil by carambola (Averrboa carambola) in field trails. Chemosphere 76:1233-1239. Lock, K. and Janssen, C.R. 2003. Influence of ageing on zinc bioavailability in soils. Environ. Pollut. 126:371-374. Lombi, E., F. Zhao, S. Dunham and S.P. McGrath. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145:11-20. Lu, C.J., Y.L. Chiu, H.L. Chen and H.Y. Lai. 2012. Effects of sludge and pH adjustment on Cd speciation in soil and growth and Cd accumulation in Pak Choi. Soil Sediment Contam. 21:510-524. Luo, C., Z. Shan, X. Li and A.J.M. Baker. 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773-1784. Martinez, C. E. and Motto, H. L. 2000. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 107:153−158. McBride, M., Sauve, S. and Hendershot, W. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48:337−346. McLean, E.O. 1982. Soil pH and lime requirement. pp.199-224. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Meers, E., B. Vandecasteele, A. Rutten, J. Vanfronsveld and F.M.G. Tack. 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ. Exp. Bot. 60:57-68. Ministry of Agriculture, Forestry and Fisheries of Japan. 2002. Investigation of Cd concentration of staple crops: the outline of the results. December 2, press release, Tokyo, Japan. Murakami, M. and N. Ae. 2009. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J. Hazard. Mater. 162:1185-1192. Murakami, M., N. Ae and S. Ishikawa. 2007. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environ. Pollut. 145:96-103. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. pp.961-1010. In: D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of Soil Analysis, Part3. ASA and SSSA, Madison, WI, USA. Planquart, P., G. Bonin, A. Prone and C. Massiani. 1999. Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts, application to low metal loadings. Sci. Total Environ. 241:161-179. Pulford, I.D., D. Riddell-Black and C. Stewart. 2002. Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int. J. Phytoremediat. 4:59-72. Punshon, T. and N.M. Dickinson. 1997. Accumulation of Salix to metal stress. New Phystol. 137:303-314. Punshon, T. and N.M. Dickinson. 1999. Heavy metal resistance and accumulation characteristics in willows. Int. J. Phytoremediat. 1:361-385 Quartacci, M.F., B. Irtelli, A.J.M. Baker and F. Navari-Izzo. 2007. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920-1928. Rhoades, J.K. 1982. Cation exchange capacity. pp.149-158. In: A.L. Page (ed.) Methods of soil analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Robinson, B.H., L. Meblanc, D. Petit, R.R. Brooks, J.H. Kirkman and P.E.H. Gregg. 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:301-306. Robinson, B.H., T. Mills, D. Petit, L. Fung, S. Green and B. Clothier. 2000. Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant Soil 227:301-306. Salt, D.E., R.C. Prince, I.J. Pickering and I. Raskin. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109:1427-1433. Shah, K. and R.S. Dubey. 1998. A 18kDa Cd inducible protein complex: Its isolation and characterization from rice (Oryza sativa L.) seedlings. J. Plant Physiol. 152:448-454. Shute, T., and S.M. Macfie. 2006. Cadmium and zinc accumulation in soybean: A threat to food safety? Sci. Total Environ. 371:63-73. Sobkowiak, R. and J. Deckert. 2003. Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol. Biochem. 41:767-772. Somashekaraiah, B.V., K. Padmaja and A.R.K. Prasad. 1992. Phytotoxicity of cadmium ions on germination seedlings of mung bean (Phaseolus vulgaris)—involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant 85:85-89. United States Department of Agriculture. 2011. http://www.usda.gov/wps/portal/usda/usdahome Van Assche, F. and H. Clijsters. 1990. Effects of metal on enzyme activity in plants. Plant Cell Environ. 13:195-206. Vogeli-Lange, R. and G.J. Wanger. 1990. Suncellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92:1086-1093. Wang, X. and Y.Y. Wu. 1995. Effect of modification treatments on behaviour of heavy metals in combined polluted soil. Chinese J. Appl. Ecol. 6:440-444. Wang, X. and Y.Y. Wu. 1997. Behaviour property of heavy metals in soil-rice system. Chinese J. Appl. Ecol. 16:10-14. Wasay, S.A., S. Barrington and S. Tokunaga. 1998. Retention form of heavy metals in three polluted soils. J. Soil. Contaminat. 7:103-119. Wei, Z.B., X.F. Guo, Q.T. Wu, X.X. Long and C.J. Penn. 2011. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. Int. J. Phytoremediat. 13:717-729. Xian, X. 1987. Chemical partitioning of cadmium, zinc, lead, and copper in soils near smelters. J. Environ. Sci. Heal. 6:527−541. Yankov, B., V. Delibaltova and M. Bojinov. 2000. Content of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars grown in industrially polluted region. Helia 24:131-136. Zhang, G., F. Wu, K. Wei, Q. Dong, F. Dai, F. Chen and J. Yang. 2006. Cadmium stress in higher plants. pp. 87-101. In: N.A. Khan and Samiullah (eds.) Cadmium Toxicity and Tolerance in Plants. Narosa Publishers, New Delhi, India. Zhang, Y., B.H. Liao, Q.R. Zeng, M. Zeng and M. Lei. 2008. Surfactant linear alkylbenzene sulfonate effect on soil Cd fractions and Cd distribution in soybean plants in a pot experiment. Pedosphere 18:242-247. Zhivotovsky, O.P., J.A. kuzovkina, C.P. Schulthess, T. Morris, D. Pettinelli and M. Ge. 2011. Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Int. J. Phytoremediat. 13:75-94.
摘要: 
由於引用工廠排放之受污染水源進行灌溉,國內有許多農地因為受到重金屬污染而休耕,雖這些受污染農地多數已經完成整治及復耕,但對於受鎘污染的農地而言,儘管土壤已完成整治,若繼續種植特定品種稻米,所生產米粒所累積的鎘濃度仍可能會超過食米重金屬限量標準。為了解決上述問題,本論文以能源作物大豆為主題,研究大豆不同部位對於不同重金屬之累積能力,並回顧彰化縣公務車輛利用生質柴油對於排氣及車輛性能影響之試驗成果,最後進行受鎘污染農地種植大豆及生產生質柴油之可行性評估,以避免鎘米之問題繼續產生。研究結果顯示,土壤中存在低濃度鎘(小於5 mg kg-1)及添加生物固形物皆會促進大豆之生長,大豆各部位對於鎘之累積濃度為以根部及地上部為最高,豆仁對於鎘的累積能力低,較低之土壤pH會使大豆對於鎘的生物濃縮係數(植物體鎘濃度/土壤鎘濃度)增加,在鎘及其他重金屬污染土壤種植大豆,除了可以利用地上部移除土壤中的鎘及其他重金屬外,所生產的豆仁更可以進一步生產生質柴油,提供柴油車輛使用。與未添加生質柴油之D-100比較,使用B-10 (添加10%生質柴油)及B-20 (添加20%生質柴油)可以降低使供試車輛的耗油量,並使車輛所排放之HC、NOx及污染度較低,若再考慮供試車輛所排放之CO及HCl,B-20應為較佳之選擇。
此外,為避免農地繼續產生鎘米及受到重金屬污染,本論文假設農田引水灌溉超過管制標準最短年限100年及農田符合土壤污染監測標準的條件下,估算灌溉用水水質中重金屬濃度,進行水質重金屬加嚴排放標準之探討;並輔以各項政府之行政作為,訂定地方自治法規,限制農地耕種稻米,確保民眾食品安全及兼顧農民生計,以解決彰化縣多年之土壤污染問題。

In Taiwan, many croplands have been contaminated by heavy metals resulted from irrigation water with illegal wastewater discharge from surrounding industrial plants. Once verified, such croplands would be subject to the Soil and Groundwater Pollution Remediation Act (SGWPR Act) and lie fallow. Although most of foregoing croplands have been remediated and resumed planting crops, grains of some rice species are found to be re-contaminated by Cd containing unlawful concentration of cadmium (Cd) and are not suitable for consumption. The object of this study is to assess the feasibility of planting soybean in the fallow croplands resulted from Cd contamination. Soybean, a crop containing high calorific value, was used in this study to investigate its accumulating capacity of various heavy metals when growing in contaminated soils. The soybean harvested from the Cd contaminated lands was transformed to form biodiesel. A feasibility study was conducted by adding 10% and 20% biodiesel to bus fuel tank to assess the effects on bus exhaust gas and driving performance. Experimental results showed that low concentration of Cd (< 5 mg kg-1) in soil with the application of biosolid (wasted sludge) in farming enhanced growth of the soybean. Soybean growing in the soil with Cd concentration less than 5 mg kg-1 accumulated higher concentration of Cd in its root and shoot, and lower concentration in the bean itself. Compared with pH 6.7, the soybean grown in Cd-contaminated soils of pH 5.9 had a higher bioconcentration factor ([crop Cd concentration] / [soil Cd concentration]). Farming soybean in Cd-contaminated soils not only removed Cd from contaminated soils by phytoextraction but also produced biofuel using soybean. As opposed to D-100, a diesel without adding biofuel, B-10 (add 10 % of biofuel) and B-20 (add 20 % of biofuel) had higher fuel efficiencies and less HC and NOx emissions. B-20 is even a better choice if reduction of CO and HCl emissions is considered. In order to avoid croplands re-contaminated by heavy metals results from the irrigation of contaminated water and also to conform to the SGWPR Act, the total mass of copper (Cu), nickel (Ni), zinc (Zn), and chromium (Cr) in the irrigating water was used as a threshold to calculate the upper concentration allowed if continuously irrigating for 100 years. Further govermental actions, like the establishment of severe standards and the prohibition of planting rice in the slightly contaminated soils, are needed to completely solve the soil contamination in Changhua County.
URI: http://hdl.handle.net/11455/5890
其他識別: U0005-1408201310342700
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.