Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5891
標題: 自發性高溫好氧廢水處理系統之比生物潛熱與動力參數評估
Evaluation of Specific Biological Heat Potential and Kinetic Parameters of an Autothermal Thermophilic Aerobic Wastewater Treatment System
作者: 洪瑞敏
Hung, Jui-Min
關鍵字: 自發性高溫好氧處理;autothermal thermophilic aerobic treatment (ATAT);比生物潛熱;微生物動力參數;呼吸儀;兩相動力模式;熱平衡模式分析;廢水處理;biological heat potential;microbial kinetic parameters;respirometer;two phases kinetic mode;lwastewater treatment
出版社: 環境工程學系所
引用: 行政院環保署 (1996) 「建立都會區餐廳廢油污水回收處理及再利用體系研究計畫」,期中報告,EPA-86-G102-09-09。 江舟峰 (1998) 「以呼吸儀評估染整廢水高溫好氧處理可行性研究」,研究報告,朝陽科技大學環境技術服務中心,台中。 江舟峰、吳勇興、洪瑞敏 (2007) 「呼吸儀在廢水生物處理系統的監控原理與應用」,化工技術,第13期,第 10卷,第169-190頁。 宋倫國、吳國源、吳仲賢 (1998) 「高溫好氧處理高濃度有機廢水實例」,第二十三屆廢水處理技術研討會,工業污染防治技術服務團。 李季眉 編輯 (1997)「環境微生物」,中華民國環境工程學會出版。 沈育資 (2008) 「高溫好氧油脂分解菌動力參數研究」,碩士論文,中興大學環境工程學系,台中。 林慈儀 (2008) 「高溫好氧系統生物分解動力學及菌相分析之研究」,碩士論文,中興大學環境工程學系,台中。 林慧蓉 (2009) 「評估高溫好氧系統對高濃度有機廢水處理成效及系統菌相分析研究」,碩士論文,中興大學環境工程學系,台中。 吳勇興 (2004) 「自發性高溫好氧處理程序之研究:系統參數測定演算法之開發」,博士論文,中興大學環境工程學系,台中。 洪瑞敏 (2003) 「活性污泥之呼吸儀毒性試驗研究」,碩士論文,朝陽科技大學環境工程與管理研究所,台中。 洪瑞敏、陳俊宏、徐碧霜、吳勇興、江舟峰(2003)「氣泡式呼吸儀生化需氧量(RBOD)測定誤差探討」,2003環境污染控制評估研討會,元培技術學院。 施善瑞 (2010) 「高溫好氧薄膜系統對高濃度有機廢水處理成效之研究」,碩士論文,中興大學環境工程學系,台中。 張聖雄 (2007) 「廢水油脂處理技術簡介」,環保技術e報,第44期。 http://proj.ftis.org.tw/eta/epaper/epaper/Eco-044.htm 許以樺 (2000) 「以高溫好氧處理油脂廢水可行性研究」,碩士論文,中興大學環境工程學系,台中。 許振峯、翁煥廷 (2009) 「探討都市污水中油脂特性及油脂截留器設置問題」,桃園縣大學校院產業環保技術服務團環保簡訊,第三期。 http://setsg.ev.ncu.edu.tw/newsletter/epnews3-2-1.html 曾淳錚 (1996) 「純氧活性污泥法簡介及其應用實例」,中華技術,第32期,第3-11頁。 歐陽嶠暉 (1998) 「純氧活性污泥法」,活性污泥處理法,環工生物程序講義,第143-164頁。 歐陽嶠暉 (2007) 「下水道工程學」,第四版,長松文化,台北。 蔣本基、曾迪華 (1991) 「純氧活性污泥程序-工業區污水處理廠操作最佳化(五)」,經濟部工業局,第62-67頁。 陳俊宏 (2003) 「生化需氧量呼吸儀測定法之研究」,碩士論文,朝陽科技大學環境工程與管理研究所,台中。 蕭蘊華,傅崇德,許鼎君 譯 (1995) 「環境工程化學」,第四版,下冊,美商麥格羅希爾公司,滄海書局,第629-634頁。 顏國欽 編註 (1993) 「食品油脂學」,上冊,國立中興大學教務處出版組印。 Acharya, C., G. Nakhla, A. Bassi, and R. Kurian (2004) “Treatment of 12 High Strength Pet Food Wastewater Using Two Stage Membrane Bioreactors,” In Proceedings of the 77th Annual Conference of Water Environment Federation, New Orleans, U.S.A. Albuquerque, L., F. A. Rainey, A. P. Chung, A. Sunna, M. F. Nobre, R. Grote, G. Antranikian, and M. S. daCosta (2000) “Alicyclobacillus Hesperidum sp. nov. and a Related Genomic Species from Solfataric Soils of Sao Miguel in the Azores,” International Journal of Systematic and Evolutionary Microbiology, 50, 451-457. Allais, J. J., G. Hoyos-Lopez, and J. Baratti (1987) “Characterization and Properties of an Inulinase from a Thermophilic Bacteria,” Carbohydrate Polymers, 7, 277-290. Aoki, N. and M. Kawase (1991) “Development of High-performance Thermophilic Two-phase Digestion process,” Water Science and Technology, 23, 1147-1156. Argaman, Y. and C. E. Adams (1977) “Comprehensive Temperature Model for Aerated Biological Systems,” Progress in Water Technology, 9(1-2), 397-409. American Public Health Association; American Water Works Association; Water Environment Federation (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed.; Washington D.C. Andrews, J. F. (1968) “A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substrates,” Biotechnology and Bioengineering, 10, 707-723. Angelidaki, I. and B. K. Ahring (1992) “Effects of Free Long-Chain Fatty Acids on Thermophilic Anaerobic Digestion,” Applied Microbiology and Biotechnology, 37 (6), 808-812. Atkinson A., C. G. T. Evans, and R. G. Yeo (1975) “Behavior of Bacillus stearothermophilus grown in different media,” Journal of applied bacteriology, 38, 301-304. Baier, U. and H. D. Zwiefelhofer (1991) “Sludge stabilization, effects of aerobic thermophilic pretreatment,” Water Science and Technology, 3, 56-61. Banat, F. A., S. Prechtl, and F. Biscof (2000) “Aerobic Thermophilic Treatment of Sewage Sludge Contaminated with 4-nonylphenol,” Chemosphere, 44, 294-302. Barr, T. A., J. M. Taylor, and S. J. B. Duff (1996) “Effect of HRT, SRT and Temperature on the Performance of Activated Sludge Reactors Treating Bleached Kraft Mill Effluent,” Water Research, 30, 799-810. Beaudet, R., C. Gagnon, J. G. Bisaillon, and M. Ishaque (1990) “Microbiological Aspects of Aerobic Thermophilic Treatment of Swine Waste,” Applied and Environmental Microbiology, 56, 971-976. Becker, P., D. Koster, M. N. Popov, S. Markosslan, G. Antraniklan, and H. Maerkl (1999) “The Biodegradation of Olive Oil and the Treatment of Lipid-rich Wool Scouring Wastewater under Aerobic Thermophilic Conditions,” Water Research, 33(3), 653-660. Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno (1996) “Isolation of Thermus strains from hot Composts (60 to 80oC),” Applied and Environmental Microbiology, 62, 1723-1727. Benefield, L. D. and C. W. Randall (1980) “Biological Process Design for Wastewater Treatment,” Prentice-Hall, Inc., New York. Berthouex, P. M. and L. C. Brown (2002) “Statistics for Environmental Engineers and Scientists,” 2nd ed., CRC Press Ltd., Boca Raton, FL, USA, 336-338. Berube, P. R. and E. R. Hall (1999) “Treatment of Evaporator Condensate Using a High Temperature Membrane Bioreactor: Determination of Maximum Operating Temperature and System Costs,” In: Proceedings of TAPPI 1999 International Environmental Conference, Toronto, Canada, 769-80. Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, and R. G. J. M. van der Lans (1990) “Oxygen and Carbon Dioxide Mass Transfer and the Aerobic, Autotrophic Cultivation of Moderate and Extreme Thermophiles: A Case Study Related to the Microbial Desulfurization of Coal,” Biotechnology and Bioengineering, 35, 1111-1119. Bouthier, de La Tour, C. C. Portemer, M. Nadal, K. O. Stetter, P. Forterre, and M. Duguet (1990) “Reverse Gyrase, a Hallmark of the Hyperthermophilic Archaebacteria,” Journal of Bacteriology, 172, 6803-6808. Brock, T. D. and H. Freeze (1969) “Thermus aquaticus gen. n. and sp. n., A Nonsporulating Extreme Thermophile,” Journal of Bacteriology, 98, 289-297. Brock, T. D. and K. L. Boylen (1973) “Presence of Thermophilic Bacteria in Laundry and Domestic Hot-water Heaters,” Applied Microbiology, 25, 72-76. Brock, T. D. (1986) “Thermophiles. General, Molecular and Applied Microbiology,” John Wiley and Sons, New York. Brooke, R. C., G. R. Lister, P. M. A. Toivonen, W. E. Vidaver, and W. D. Binder (1989) “Fall Physiological in Activation and Spring Reactivation in Western Conifer Species,” Poster, 40th Annu. AIBS Meeting, August 1989, Toronto, Ontario. Brown, S. C., C. P. L. Grady, and H. H.Tabak (1990) “ Biodegradation Kinetics of Substituted Phenolics: Demonstration of a Protocol Based on Electrolytic Respirometry ” Water Research, 24, 853-861. Brown, E. V. and J. D. Enzminger (1991) “Temperature Profile and Heat Transfer Model for a Chemical Wastewater Treatment Plant,” Environmental Progress, 10, 159-168. Debabrata, M. and A. K. Dikshit (2002) “Applications of the Deep-Shaft Activated Sludge Process in Wastewater Treatment,” International Journal of Environment and Pollution, 17(3), 266-272. Droffner, M. L. and W. F. Brinton (1995) “Survival of E. coli and Salmonella Populations in Aerobic Thermophilic Composts as Measured with DNA Gene Probes,” Zentralblatt Fuer Hygiene und Umweltmedizin, 197, 387-397. Cetin, F. D. and G. Surucu (1990) “Effects of Temperature and pH on the Settleability of Activated Sludge Flocs,” Water Science and Technology, 22(9), 249-254. Cech, J. S., J. Chudoba, and P. Grau (1984) “Determination of Kinetic Constants of Activated Sludge Microorganisms.” Water Science and Technology, 17(2/3), 259–272. Campbell, H. J. and R. F. Rocheleau (1976) “Waste Treatment at a Complex Plastics Manufacturing Plant,” Journal of the Water Pollution Control Federation, 48, 256-273. Chan, Y. J., M. F. Chong, and L. L. Chung (2012) “Start-up, steady state performance and kinetic evaluation of a thermophilic integrated anaerobic–aerobic bioreactor (IAAB),” Bioresource Technology, 125, 145-157. Chen, M. Y., G. H. Lin, Y. T. Lin, and S. S. Tsay (2002a) “Meiothermus taiwanensis sp. nov., A Novel Filamentous Thermophilic Species Isolated in Taiwan,” International Journal of Systematic and Evolutionary Microbiology, 52, 1647-1654. Chen, M. Y., S. S. Tsay, K. Y. Chen, Y. C. Shi, Y. T. Lin, and G. H. Lin (2002b) “Pseudoxanthomonas taiwanensis sp. nov., A Novel Thermophilic, N2O-producing Species Isolated from Hot Springs,” International Journal of Systematic and Evolutionary Microbiology, 52, 2155-2161. Chen, C. I. and R. T. Taylor (1995) “Thermophilic Biodegradation of BTEX by Two Thermus Species,” Biotechnology and Bioengineering, 48, 614-624. Chen C. I. and R. T. Taylor (1997) “Batch and Fed-batch Bioreactor Cultivations of a Thermus Species with Thermophilic BTEX-degrading Activity,” Applied Microbiolgy Biotechnology, 47, 726-733. Chiang, C. F. (1997) “Study of Bioaerosol Dispersion from a Full-scale Sludge Composting Facility in USA,” The Chinese Association for Aerosol Research, October 1-2. Chiang, C. F., C. J. Lu, L. K. Sung, and Y. S. Wu (2001) “Full-scale Evaluation of Heat Balance for Autothermal Thermophilic Aerobic Treatment of Food Processing Wastewater,” Water Science and Technology, 43(11), 251-258. Chu, A., D. S. Mavinic, W. D. Ramey, and H. G. Kelly, (1994) “Volatile fatty acid production in thermophilic aerobic digestion of sludge,” Water Research, 28, 1513-1522. Chung, A. P., F. A. Rainey, M. Valente, M. F. Nobre, and M. S. da Costa (2000) “Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., Two New Species from Iceland,” International Journal of Systematic and Evolutionary Microbiology, 50, 209-217. Cooney, C.L., D. I. C. Wang, and R. I. Mateles (1968) “Measurement of Heat Evolution and Correlation with Oxygen Consumption During Microbial Growth,” Biotechnology and Bioengineering, 11, 269-281. Couillard, D., S. Gariepy and F. T. Tran (1989) “Slaughterhouse Effluent Treatment by Thermophilic Aerobic Process,” Water Research, 23, 573-579. Couillard, D. and S. Zhu (1993) “Thermophilic Aerobic Process for the Treatment of Slaughterhouse Effluents with Protein Recovery,” Environmental Pollution, 79, 121-126. De Rosa, M. A. (1989) “Lipid Structures in Thermotoga Maritime,” In: Microbiology of extreme environments and its potential for biotechnology, da Costa, M. S., J. C. Dyarte and R. A. D. Walliams (Editors), Elsevier Applied Science. London and New York. Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological Treatment of Kraft Pulp Mill Foul Condensates at High Temperatures Using a Membrane Bioreactor,” Process Biochemistry, 40, 1125-1129. Dougherty, M. H. and R. R. McNary (1958) “Elevated Temperature Effect on Citrus Waste Activated Sludge,” Sewage and Industrial Wastes, 30, 1263-1265. Dufresne, S., J. Bousquet, M. Boissinot, and R. Guay (1996) “Sulfobacillus disulfidooxidans sp. nov., A New Acidophilic, Disulfide-oxidizing, Gram-positive, Spore-forming Bacterium,” International Journal of Systematic Bacteriology, 46, 1056-1064. Epstein, I. and N. Grossowicz (1969) “Prototrophic Thermophilic Bacillus: Isolation, Properties, and Kinetics of Growth,” Journal Bacteriology, 99, 414-417. Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa (1997) “Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., Two Extremely Radiation-resistant and Slightly Thermophilic Species from Hot Springs,” International Journal of Systematic Bacteriology, 47, 939-947. Gaudy Jr., A. F., A. Ekambaram, A. F. Rozich, and R. J. Covin (1990) “Comparision of Respirometric Methods for Determination of Biokinetic Constants for Toxic and Nontoxic Wastes,” Proceedings of the 33th Industrial Waste Conference, Purdue University. Gehm, H. W. (1956) “Activated Sludge at High Temperatures and pH Values,” In: Biological Treatment of Sewage and Industrial Wastes, Volume I: Aerobic Oxidation, J. McCabe and W. W. Eckenfelder, Jr. (Editors), Reinhold Publishing, New York, U.S.A. Ginnivan, M. J., J. L. Woods, and J. R. O`Callaghan (1980) “Survival of Salmonella dubline in Pig Slurry During Aerobic Thermophilic Treatment in Batch, Cyclic and Continuous Systems,” Journal of Applied Bacteriology, 49, 13-18. Ginnivan, M. J., J. L. Woods, and J. R. O`Callaghan (1981) “Thermophilic Aerobic Treatment of Pig Slurry,” Journal of Agricultural Engineering Research, 26, 455-466. Gonzalez, S., M. Petrovic, and D. Barcelo (2007) “Removal of a Broad Range of Surfactants from Municipal Wastewater Comparison between Membrane Bioreactor and Conventional Activated Sludge Treatment,” Chemosphere, 67, 335-343. Goto, K., H. Matsubara, K. Mochida, T. Matsumura, Y. Hara, M. Niwa, and K. Yamasato (2002) “Alicyclobacillus herbarius sp. nov., A Novel Bacterium Containing omega-cycloheptane Fatty Acids, Isolated from Herbal Tea,” International Journal of Systematic and Evolutional Microbiology, 52, 109-113. Grady, C. P. L. Jr. and H. C. Lim (1980) “Biological Wastewater Treatment, Theory and Applications,” Marcel Dekker, Inc., New York, N.Y., Chapter 9, 290-300. Grady, C. P. L. Jr., J. S. Dang, D. M. Harvey, A. Jobbagy, and X. L. Wang (1989) “Determination of Biodegradation Kinetics Through use of Electrolytic Respirometry,” Water Science and Technology, 21, 957–968. Grady, C. P. L. Jr., B. F. Smets, and D. S. Barbeau (1996) “Variability in Kinetic Parameter Estimates: a Review of Possible Causes and a Proposed Terminology,” Water Research, 30(3), 742-748. Goudar, C. T. and K. A. Strevett (1998) “Comparison of Relative Rates of BTEX Biodegradation using Respirometry,” Journal of Industrial Microbiology and Biotechnology, 21, 11-18. Gurujeyalakshmi, G. and P. Oriel (1989) “Isolation of Phenol-degrading Bacillus stearothermophilus and Partial Characterization of the Phenol Hydroxylase,” Applied and Enuironmental Microbiology, 55, 500-502. Guo, L., J. Zhao, Z. L. She, M. M. Lu, and Y. Zong (2013) “Statistical Key Factors Optimization of Conditions for Hydrogen Production from S-TE (solubilization by thermophilic enzyme) Waste Sludge,” Bioresource Technology, 137, 51-56. Hanada, S., S. Takaichi, K. Matsuura, and K. Nakamura (2002) “Roseiflexus castenholzii gen. nov., sp. nov., a Thermophilic, Filamentous, Photosynthetic Bacterium that Lacks Chlorosomes,” International Journal of Systematic and Evolutional Microbiology, 52, 187-193. Hasegawa, S., N. Shiota, K. Katsura, and A. Akashi (2000) “Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as Pretreatment for Anaerobic Digestion,” Water Science and Technology, 41, 163-169. Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter (1982) “Methanococcus Thermolithotrophicus, A Novel Thermophilic Lithotrophic Methanogen,” Archives of Microbiology, 132, 47-50. Hung, J. M., C. Y. Chen, and C. J. Lu (2007) “Microbial Community Analysis for an Autothermal Thermophilic Aerobic Treatment (ATAT) System with Denaturing Gradient Gel Electrophoresis,” The 9th International Symposium on In Situ & On-Site Bioremediation, May 7-10, Baltimore, Maryland, U.S.A. Hung, J. M., C. Y. Chen, Y. S. Wu, and C. J. Lu (2008) “Evaluation of Specific Biological Heat Potential of Oily Wastewater in Autothermal Thermophilic Aerobic Treatment System,” Journal of Environmental Biology, 29(5), 655-660. Hwu, C. S., S. K. Tseng, C. Y. Yuan, Z. Kulik, and G. Lettinga (1998) “Biosorption of Long-Chain Fatty Acids in UASB Treatment Process,” Water Research, 32, 1571–1579. Jang, H. M., S. K. Park, J. H. Ha, and J. M. Park (2013) “Microbial Community Structure in a Thermophilic Aerobic Digester Used as a Sludge Pretreatment Process for the Mesophilic Anaerobic Digestion and the Enhancement of Methane Production,” Bioresource Technology, (article in paper). Jackson, M. L. (1983) “Thermophilic Treatment of a High-Biochemical Oxygen Demand Wastewater: Laboratory, Pilot-plant and Design,” In: Proceedings of the 37th Purdue Industrial Waste Conference, Purdue University, J. M. Bell (Editors), Ann Arbor Science Publishers, Ann Arbor, Michigan, U.S.A. Jahren, S. J., J. A. Rintala, and H. Odegaard (2002) “Aerobic Moving Bed Biofilm Reactor Treating Thermomechanical Pulping Whitewater under Thermophilic Conditions,” Water Research, 36, 1067-1075. Jewell, W. J. and R. M. Kabrick (1980) “Autoheated Aerobic Thermophilic Digestion with Aeration,” Journal of Water Pollution Control Federation, 52, 512-523. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an Extremely Thermophilic Methanogen from Submarine Hydrothermal Vent,” Archives of Microbiology, 136, 254-261. Juteau, P., D. Tremblay, C. B. Ould-Moulaye, J. G. Bisaillon, and R. Beaudet (2004) “Swine Waste Treatment by Selfheating Aerobic Thermophilic Bioreactors” Water Research, 38, 539-546. Juteau, P. (2006) “Review of the Use of Aerobic Thermophilic Bioprocesses for the Treatment of Swine Waste,” Livestock Science, 102, 187-196. Kalinske, A. A. (1976) “Comparison of Air and Oxygen Activated Sludge Systems,” Journal of Water Pollution Control Federation, 48, 2472-2485. Kambhu, K. and J. F. Andrews (1969) “Aerobic Thermophilic Process for the Biological Treatment of Wastes – Simulation Studies,” Journal of Water Pollution Control Federation, 41, R127-R141. Kim, B. R., D. H. Podsiadlik, D. H. Yeh, I. T. Salmeen, and L. M. Briggs (1997) “Evaluating the Conversion of an Automotive Paint Spray Booth Scrubber to an Activated Sludge System for Removing Paint Volatile Organic Compounds from Air,” Water Environment Research, 69, 1211-1221. Kikuchi, A. and K. Asai (1984) “Reverse Gyrase-A Topoisomerase which Introduces Positive Superhelical Turns into DNA,” Nature, 309, 677-681. Kurian, R., C. Acharya, G. Nakhla, and A. Bassi (2005) “Conventional and Thermophilic Aerobic Treatability of High Strength Oily Pet Food Wastewater Using Membrane Coupled Bioreactors,” Water Research, 39, 4299-4308. Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation Kinetics of High Strength Oily Pet Food Wastewater in a Membrane-coupled Bioreactor (MBR),” Chemosphere, 65, 1204-1211. Kristjansson, J. K. and K. O. Stetter (1992) “Thermophilic Bacteria,” In: Thermophilic Bacteria, J. K. Kristjansson (Editor), CRC Press, Boca Raton, FL, U.S.A. Kristjansson, J. K. and G. A. Alfredsson (1992) “The Heterotrophic Thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus and Sacotothermus,” In: Thermophilic Bacteria, J. K. Kristjansson (Editor), CRC Press, Boca Raton, FL, U.S.A. Knoblock, M. D., P. M. Sutton, P. N. Mishra, K. Gupta, and A. Janson (1994) “Membrane Biological Reactor System for Treatment of Oily Wastewaters,” Water Environment Research, 66, 133-139. LaPara, T. M. and J. E. Alleman (1997) “Autothermal Thermophilic Aerobic Waste Treatment System, a State-of-the-Art Review,” Purdue University, West Lafayette, Indiana, U.S.A. LaPara, T. M. and J. E. Alleman (1999) “Thermophilic Aerobic Waste Treatment, Review Paper,” Water Research, 33, 895-908. LaPara, T. M., A. Konopka, C. H. Nakatsu, and J. E. Alleman (2001) “Thermophilic Aerobic Treatment of a Synthetic Wastewater in a Membrane Coupled Bioreactor,” Journal of Industrial Microbiology and Biotechnology, 26, 203-209. Lawrence A. W. and P. L. McCarty (1970) “Unified Basis for Biological Treatment Design and Operation,” Journal of Sanitary Engineering Division, ASCE, 96, 757-778. Lehninger, A. L. (1982) “Glycolysis: a Central Pathway of Glucose Catabolism. Principle of Biology,” Worth Publishers, Inc., New York. Li, X. M., G. M. Zeng, J. J. Liu, J. Chen, and S. Y. Lun (2002) “A Two-stage Anaerobic System for Biodegrading Wastewater Containing Terephthalic Acid and High Strength Easily Degradable Pollutants,” Journal of Environmental Science, 14, 474-481. Liu, S. G., N. W. Zhu, P. Ning, Loretta Y. Li, and X. Gong (2012) “The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Effects of temperature on stabilization process and sludge properties,” Chemical Engineering Journal, 197, 223-230. Loll, U. (1976) “Purification of Concentrated Organic Wastewaters from the Foodstuffs Industry by Means of Aerobic-thermophilic Degradation Process,” Progress in Water Technology, 48(2-3), 373-379. Lopetegui, J. and L. Sancho (2003) “Aerated Thermophilic Biological Treatment with Membrane Ultrafilteration: Alternative to Conventional Technologies Treating Paper Mill Effluents,” Water Science and Technology: Water Supply, 3, 245-252. Ludwig, W. and H. Klenk (2001) “Overview: A Phylogenetic Backbone and Taxonomic Framework for Procaryotic Systematics,” In: Bergey’s Manual of Systematic Bacteriology, Vol. 1, D. R. Boone, and R. W. Castenholz (Editors), 2nd ed., Springer-Verlag, New York, U.S.A., 49-66. Madigan, M. T. and B. L. Marrs (1997) “Extremophiles,” Scientific American, 276(4), 82-87. Madigan, M. T. and J. M. Martinko (2006) “Brock Biology of Microorganisms,” 11th ed., Pearson Education Inc., ISBN: 0-13-196893-9. Malladi, B. and S. C. Ingham (1993) “Thermophilic Aerobic Treatment of Potato Processing Wastewater,” World Journal of Microbiology and Biotechnology, 9, 45–49 Mason, C. A. (1986) “Microbial Death Lysis and ''cryptic'' Growth: Fundamental and Applied,” Diss. ETH No. 8150, Swiss Federal Institute of Technology, Zurich. McIntosh, K. B. and J. A. Oleszkiewicz (1997) “Volatile Fatty Acid Production in Aerobic Thermophilic Pre-treatment of Primary Sludge,” Water Science and Technology, 36(11), 189-196. McCarty, P. L. (1964) “Thermodynamics of Biological Synthesis and Growth.” Advances in Water Pollution Research Proceedings of the Second International Conference, Tokyo, Pergamon Press. McCarty, P.L (1971) “Energetics and bacterial growth,” In: Organic Compounds in Aquatic Environments, Faust, S. D. and J. V. Hunter (Editor) Marcel Dekker, Inc., New York. McCarty, P. L. (1972) “Energetics of organic matter degradation.” In: Water Pollution Microbiology, Mitchell, R. (Editor), John Wiley & Sons, Inc., New York. McCarty, P. L. (1975) “Stoichiometry of Biological Reactions.” Progress in Water Technology, 7(1), 157–172. Metcalf and Eddy (2003) “Wastewater Engineering: Treatment and Reuse,” 4th ed., revised by Tchobanoglous, G., F. L. Burton, and D. H. Stensel, McGraw-Hill Book Companies, Inc., New York, U.S.A. Messenger, J. R., H. A. de Villiers, and G. A. Ekama (1990) “Oxygen Utilization Rate as a Control Parameter for the Aerobic Stage in Dual Digestion,” Water Science and Technology, 22(12), 217-227. Michaelis, L. and M. L. Menten, (1913) “Die Kinetik der Invertinwirkung,” Biochemische Zeitschrift, 49, 333-369. Mikkelsen, H. and K. Keiding (2002) “The Shear Sensitivity of Activated Sludge: an Evaluation of the Possibility for a Standardised Floc Strength Test,” Water Research, 36, 2931-2940. Monod, J. (1949) “The Growth of Bacterial Cultures,” Annual Review of Microbiology, 3, 371-394. Mohaibes, M. and H. Heinonen-Tanski (2004) “Aerobic Thermophilic Treatment of Farm Slurry and Food Wastes,” Bioresource Technology, 95, 245-254. Muck, R. E. and C. P. L. Grady, Jr. (1974) “Temperature Effects on Microbial Growth in CSTR’S,” Journal of the Environmental Engineering Division, 100(5), 1147-1163. Munster, M. J., A. P. Munster, J. R. Woodrow, and R. J. Sharp (1986) “Isolation and Preliminary Taxonomic Studies of Thermus strains Isolated from Yellowstone National Park, U.S.A. ,” Journal of General Microbiology, 132, 1677-1683. Nakano, K. and M. Matsumura (2001) “Improvement of Treatment Efficiency of Thermophilic Oxic Process for Highly Concentrated Lipid Wastes by Nutrient Supplementation,” Journal of Bioscience and Bioengineering, 92, -532-538. Nazina, T. N., T. P. Tourova, A. B. Poltaraus, E. V. Novikova, A. A. Grigoryan, A. E. Ivanova, A. M. Lysenko, V. V. Petrunyaka, G. A. Osipov, S. S. Belyaev, and M. V. Ivanov (2001) “Taxonomic Study of Aerobic Thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from Petroleum Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the New Combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans,” International Journal of Systematic and Evolutionary Microbiology, 51, 433-446. Nobre, M. F., H. G. Truper, and M. S. da Costa (1996) “Transfer of Thermus ruber (Loginova et al., 1984), Thermus silvanus (Tenreiro et al., 1995), and Thermus chliarophilus (Tenreiro et al., 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., Respectively, and Emendation of the Genus Thermus.,” International Journal of Systematic Bacteriology, 46, 604-606. Pask-Hughes, R. and R. A. D. Williams (1975) “Extremely Thermophilic Gram-negative Bacteria from Hot Tap Water,” Journal of General Microbiology, 88, 321-328. Pertulla, M., M. Konradsdottir, J. Pere, J. K. Kristjansson, and L. Viikari (1991) “Removal of Acetate from NSSC Sulphite Pulp Mill Condensates Using Thermophilic Bacteria,” Water Research, 25, 599-604. Popel, F. and C. Ohnmacht (1972) “Thermophilic Bacterial Oxidation Highly Concentrated Substrates,” Water Research, 6, 807- 815. Reinscheid, U. M., M. P. Bauer, and R. Mu Eller (1996) “Biotransformation of halophenols by a thermophilic Bacillus sp.,” Biodegradation, 7, 455-461. Rintala, J. and R. Lepisto (1993) “Thermophilic Anaerobic-aerobic and Aerobic Treatment of Kraft Bleaching Effluents,” Water Science and Technology, 28(2), 11-16. Rittmann, B. E., Bae, W., Namkung, E., and C. J. Lu, (1987) “A Critical Evaluation of Microbial Product Formation in Biological Process,” Water Science and Technology, 19(7), 517–528. Rittmann, B. E. and P. L. McCarty (2001) “Environmental Biotechnology: Principles and Application,” McGraw-Hill, Singapore. Robinson J. A. and J. M. Tiedie (1983) “Nonlinear Estimation of Monod Growth Kinetic Parameters from a Single Substrate Depletion Curve,” Applied and Enuironmental Microbiology, 45, 1453-1458. Rozich, A. F. and, A. F. Gaudy Jr. (1992) “Design and Operation of Activated Sludge Processes Using Respirometry,” Lewis Publishers, Inc.: Boca Raton, Fla. Rozich, A. F. and R. J. Colvin (1997) “Design and Operational Considerations for Thermophilic Aerobic Reactors Treating High Strength Wastes and Sludges,” In: Proceedings of the 52nd Industrial Waste Conference, Purdue University, J. E. Alleman (Editor), Ann Arbor Press, Ann Arbor, Michigan, U.S.A. Rozich, A. F. and K. Borgacs (2001) “Use of Thermophilic Biological Aerobic Technology for Industrial Waste Treatment,” In: Proceedings of the Second World Water Congress of IWA, Berlin, Germany. Rozich, A. F. and K. Bordacs (2002) “Use of Thermophilic Biological Aerobic Technology for Industrial Waste Treatment,” Water Science and Technology, 46(4-5), 83-89. Rudolfs, W. and H. R. Amberg (1953) “White Water Treatment: V. Aeration with Nonflocculent Growths,” Sewage and Industrial Wastes, 25, 70-78. Rowe, J. J., I. D. Goldberg, and R. E. Amelunxen (1975) “Development of Defined and Minimal Media for Thegrowth of Bacillus stearothermophilus,” Journal of Bacteriology, 124, 279-284. Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa (2000) “Complete Decomposition of Biological Waste Sludge by Thermophilic Aerobic Bacteria,” Water Research, 42, 81-88. Sandford, G. S. and K. A. Chisolm (1977) “The Treatment of Municipal Wastewater Using the ICI Deep Shaft Process,” In: presented at the 29th Western Canada Water and Sewage Treatment Conference, Edmonton, Alberta, Canada. Smets, B. F., Jobbagy, A., Cowan, R. M., and C. P. L. Grady, Jr. (1996) “Evaluation of Respirometric Data: Identification of Features that Preclude data fitting with existing kinetic expressions.” Ecotoxicology and Environmental Safety, 33, 89–99. Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt (Editor) (1986) “Bergey''s Manual of Systematic Bacteriology,” Williams and Wilkins, Baltimore, MD, U.S.A. Sharp, R. J., P. W. Riley, and D. White (1992) “Heterotrophic thermophilic Bacilli. In Thermophilic Bacteria,” Edited by J. K. Kristjansson, Boca Raton: CRC Press, 20-50. Shiota, N., A. Akashi, and S. Hasegawa (2002) “A Strategy in Wastewater Treatment Process for Significant Reduction of Excess Sludge Production,” Water Science and Technology, 45(12), 127-134. Silva, Z., C. Horta, M. S. da Costa, A. P. Chung, and F. A. Rainey (2000) “Polyphasic Evidence for the Reclassification of Rhodothermus obamensis (Sako et al., 1996) as a Member of the Species Rhodothermus marinus (Alfredsson et al., 1988),” International Journal of Systematic and Evolutionary Microbiology, 50, 1457-1461. Simkins, S. and M. Alexander (1985) “Nonlinear Estimation of the Parameters of Monod Kinetics that Best Described Mineralization of Several Substrate Concentrations by Dissimilar Bacterial Densities,” Applied and Environmental Microbiology, 50, 816-824 Sorkhoh, N. A., A. S. Ibrahim, M. A. Ghannoum, and S. S. Radwan (1993) “High-Temperature Hydrocarbon Degradation by Bacillus stearothermophilus from Oil-polluted Kuwaiti Desert,” Applied Microbiology and Biotechnology, 39, 123-126. Spanjers, H. and P. A. Vanrolleghem (1995) “Respirometry as a Toll for Rapid Characterization of Wastewater and Activation Sludge,” Water Science and Technology, 31(2), 105-114. Spanjers, H., P. A. Vanrolleghem, G. Olsson, and P. Dold (1996) “Respirometry in Control of the Activated Sludge Process,” Water Science and Technology, 34(3-4), 117-126. Spanjers, H., P. A. Vanrolleghem, K. Nguyen, H. Vanhooren, and G. G. Patry (1998) “Towards a Simulation Benchmark for Evaluating Respirometry Based Control Strategies,” Water Science and Technology, 37(12), 219-226. Srinivasaraghavan, R. and A. F. Gaudy, Jr. (1975) “Operational Performance of an Activated Sludge Process with Constant Sludge Feedback,” Journal of Water Pollution Control Federation, 47( 7), 1946-1960. Stahl, S. and C. Ljunger (1976) “Calcium Uptake by Bacillusstearo thermophilus : A Requirement for Thermophilic Growth,” Federation of European Biochemical Societies Letters, 63, 184-187. Stenstrom, M. K. and R. G. Gilbert (1981) “Effects of Alpha, Beta, and Theta Factor upon the Design, Specification and Operation Aeration Systems,” Water Research, 15, 643-654. Stephenson, T., S. Judd, B. Jefferson, and K. Brindle (2001) “Membrane Bioreactors for Wastewater Treatment,” IWA Publishing, London, UK. Stetter, K. O. (1998) “Hyperthermophiles: Isolation, Classification and Properties,” In: Extremophiles: Microbial Life in Extreme Environments, K. Horikoshi and W. D. Grant (Editors), Wiley, New York, U.S.A. Stover, E. L., M. Thomas, and M. Pudvay (2001) “Aerobic Thermophilic Treatment of High Temperature Wastewater,” In: Proceedings of the Seventh Annual Industrial Wastes Technical and Regulatory Conference, Water Environment Federation, Alexandria, Virginia, U.S.A., 46-65. Suvilampi, J. and J. Rintala (2002) “Comparison of Activated Sludge Process at Different Temperatures: 35oC, 27-55oC, and 55oC,” Environmental Technology, 23, 1127-1134. Suvilampi, J., A. Lehtomaki, and J. Rintala (2003) “Comparison of Laboratory-scale Thermophilic Biofilm and Activated Sludge Processes Integrated with a Mesophilic Activated Sludge Process,” Bioresource Technology, 88, 207-214. Suvilampi, J., A. Lehtomaki, and J. Rintala (2005) “Comparative Study of Laboratory-scale Thermophilic and Mesophilic Activated Sludge Processes,” Water Resources, 39, 741–750. Sűrűcű, G. A., E. S. K. Chian, and R. S. Engelbrecht (1975) “Thermophilic Microbiological Treatment of High Strength Wastewaters with Simultaneous Recovery of Single Cell Protein.” Biotechnology and Bioengineering, 17, 1639-1662. Sűrűcű, G. A., E. S. K. Chian, and R. S. Engelbrecht (1976) “Aerobic Thermophilic Treatment of High Strength Wastewaters,” Journal of Water Pollution Control Federation, 48, 669-679. Takai, K., T. Nunoura, Y. Sako, and A. Uchida (1998) “Acquired Thermotolerance and Temperature Induced Protein Accumulation in the Extremely Thermophilic Bacterium Rhodothermus Obamensis,” Journal of Bacteriology, 180, 2770-2774. Talati, S. N. and M. K. Stenstrom (1990) “Aeration Basin Heat Loss,” Journal of Environmental Engineering, 116, 70-86. Tano-Debrah, K., S. Fukuyama, N. Otonari, F. Taniguchi, and M. Ogura (1999) “An Inoculum for the Aerobic Treatment of Wastewaters with High Concentration of Fats and Oils,” Bioresource Technology, 69, 133-139. Tenreiro, S., M. F. Nobre, and M. S. da Costa, (1995) “Thermus Silvanus sp. nov. and Thermus Chliarophilus sp. nov., Two New Species Related to Thermus Ruber but with Lower Growth Temperatures,” International Journal of Systematic Bacteriology, 45, 633-639. Tischer, R. G., L. R. Brown, and D. W. Cook (1962) “Decomposition of Wastewater by Thermophilic Microorganisms,” Journal of Water Pollution Control Federation, 34, 1244-1255. Tripathi, C. S. and D. G. Allen (1999) “Comparison of Mesophilic and Thermophilic Aerobic Biological Treatment in Sequencing Batch Reactors Treating Bleached Kraft Pulp Mill Effluent,” Water Research, 33, 836-846. Ugwuanyi, J. O., L. M. Harvey, a
摘要: 
傳統廢水好氧生物處理遭遇高污泥產量、低反應速率及低有機負荷的技術瓶頸,而高溫好氧生物處理系統在45~65oC的環境條件下,並可提高污染物降解的反應速率。且在高溫系統的環境條件下,因降低微生物對能量的使用效率,誘使生化反應的基質還原能以朝向熱能損失的路徑為主,降低能量用於細胞生長的比例,而可減少生物處理系統的污泥淨產生量。但由於高溫好氧程序之操作溫度與體積負荷均高於傳統活性污泥法,因此可能產生一些設計與操作上的困難,例如:高溫能否自發性達成或持續維持,高溫時所需的高傳氧率之需求如何克服,污泥膨化及泡沫化的克服等等問題。
本研究進行高溫好氧生物處理反應槽操作,並藉反應槽操作及氣泡式呼吸儀,評估高溫好氧系統的生物反應動力参數及比生物潛熱,主要分三階段進行,第一階段首先進行呼吸儀兩相動力模式求解及驗證;第二階段則以呼吸儀評估高溫好氧生物反應動力;最後,第三階段研究為高溫好氧反應槽操作及水質參數監測,並建構反應槽熱平衡分析模式,並藉以評估系統的比生物潛熱。
研究結果顯示,呼吸儀兩相動力模式求解的生物反應動力參數:最大比生長速率(maximal specific growth rate, μm)、半飽和係數(half-saturation constant, Ks) 、細胞衰減常數(decay coefficient, Kd) 與淨生長係數(gross growth yield, Yg)有較傳統分析方法低的變異係數(coefficients of variation, Cv),Cv值介於2.5~15.9%,主要因為採用呼吸儀方法所測得之生物攝氧量較傳統BOD分析方法有較佳精確性。因此,呼吸儀及兩相動力模式是一種良好的微生物動力參數分析工具。而當基質濃度為2,500 mg/L(S0/X0 =14.9 ; S0/Ks=9.89 )時的試驗結果,Yo較為趨近Yg,且微生物動力實驗結果的變異係數較低,具有較佳的複現性。因此,建議在呼吸儀批次動力試驗設計植菌條件時,植菌攝氧量條件以S0/X0值為15時較佳。利用上述條件,以化學需氧量為2,500 mg/L的葡萄糖溶液為基質,以呼吸儀進行高溫好氧系統生物動力參數實驗,結果發現高溫好氧系統在55oC條件下,生物反應動力參數μm、Ks、Kd與Yg分別為5.16±0.11/day;401.7±15.2 mg/L;0.39±0.05 1/day與 0.46±0.04 mg biomass/mg substrate as BOD。且生物反應動力參數均有隨溫度提高而增加的趨勢,而μm、Ks、Kd與Yg的vant Hoff-Arrhenius溫度效應常數,則分別為1.040、1.028、1.019與1.033,顯示高溫好氧系統具有較傳統活性污泥更佳的生物反應動力參數,對於處理高濃度有機廢水更具潛力。
然後,本研究針對高溫好氧的廢水處理系統進行比生物潛熱評估研究,污泥停留時間(sludge retention time, SRT)操作在5天的條件下,高溫好氧反應槽分別進流COD濃度為11,250及17,420 mg COD/L的實廠廢水及人工合成廢水,結果發現這兩個系統的COD去除率可達88~93%.,油脂的去除率可達69~72%。反應槽溫度分別維持在43與48oC,評估系統的平均比生物潛熱值(specific biological heat potential, hb)分別為3.7及3.1 kcal/g COD。而以實廠食品廢水及人工合成廢水進流的模廠試驗結果,求得平均Yo值分別為0.10 及 0.13 mg MLSS/mg COD removed。進一步提高進流廢水基質COD濃度達21,460 mg/L,系統的SRT設定操作在5天,反應槽操作溫度分別控制在35、45、55與 65oC。此時系統不同溫度條件下的COD去除率可達77~91%.,油脂的去除率可達50~69%,此時隨著操作溫度提高,有機質與油脂的降解率有提高的趨勢,這結果可能與油脂的隨著溫度提高而相對增加溶解度有關,顯示高溫好氧系統具有良好的有機質及油脂削減效果。而此時ATAT系統在不同溫度條件下平均的hb值介於3.25~3.63 kcal/g COD 之間,而平均Yo值介於0.08 及0.19 mg MLSS/mg COD removed,此時評估系統Yo值的vant Hoff-Arrhenius溫度效應常數值(temperature effect constant, Φ)為0.958,顯示ATAT反應槽隨著操作溫度的提高,將會降低系統的污泥產生量,顯示高溫好氧生物處理可適合處理高濃度有機廢水,並可有效的降低污泥產生量。

The autothermal thermophilic aerobic treatment (ATAT) system is a biological process in which the operating temperature can be spontaneously maintained at 45 - 65oC. Comparing with the activated sludge process (ASP), the ATAT produces significantly less wasted sludge. Although, full-scale ATAT or autothermal thermophilic aerobic digestion (ATAD) systems have been well documented in literature, the technology is not widely used due to the scarcity of documentation relating to spontaneity and feasibility. There is no effective technique to evaluate the feasibility of an ATAT system. Therefore, it is necessary to develop evaluation tools for the specific biological heat potential (hb) and kinetic analysis for the ATAT system. This study also verifies the two-phase kinetic model algorithm of respirometer serial dilution kinetic and estimates microbial kinetic parameters.
Based on the two-phase model for analyzing a batch OUR vs. Ou respirogram was analyzed. For this verification study, results showed that the maximal growth rate (μm), half-saturation constant (Ks), decay coefficient (Kd) and gross growth yield (Yg) had lower coefficients of variation (Cv value was 2.5% to 15.9%) than that from the transient method. Because the oxygen uptake estimation variability of substrate was only 2.5%, therefore, respirometer is an advantageous tool to estimate kinetic parameters in microbial systems. Then, it is suggested that the ratio of S0/X0 must be higher 15 for two phase kinetic model algorithm of respirometer. The algorithm was illustrated by a respirometric test on glucose of 2,500 mg/L COD at 55oC. The result shows the μm of 5.16±0.1 1/d, Yg of 0.46±0.04 mg BOD of X/mg BOD of S, Ks of 401.7±15.2 mg/L BOD, and Kd of 0.39±0.05 1/d for the ATAT system. Also, these microbial kinetic parameters had the tendency showing that an increase in temperature also increased these paramenters. The temperature effect constants (Φ) of van’t Hoff-Arrhenius law for μm, Ks, Kd and Yg were 1.040, 1.028, 1.019 and 1.033, respectively. This result demonstrated the ATAT system has successfully competed the traditional active sludge with better microbial kinetic parameters and higher potential treatment efficiency for high concentration organic wastewaters.
Then, this study focuses on the calculation of hb of wastewater in an ATAT system. The treatment system was daily fed with realistic and artificial wastewater at 11,250 and 17,420 mg COD/L, respectively. The wastewater was rich in oil and grease (O&G) at 1,220 and 600 mg/L, respectively. The sludge retention time (SRT) was controlled at 5 days. The results showed that the COD removal efficiency was as high as 88 to 93% for the realistic and artifical wastwaters, respectively. The O&G reduction was 69 to 72%. These two systems could maintain reactor operating temperatures at 43 oC and 48oC, respectively. The average values of hb were 3.7 and 3.1 kcal/g-COD-removed and the observed growth yield (Yo) were 0.10 and 0.13 mg MLSS/mg COD for realistic and artificial wastewater, respectively. Next, this system was daily fed with oily and artificial wastewater at 21,460 mg/L COD. The SRT was controlled at 5 days and tank temperature was controlled at 35, 45, 55, and 65oC. The results showed that the COD removal efficiency was 77% to 91%. However, the O&G removal efficiency was 50% to 69%. These results might indicate that oil and grease become more soluble and accessible to microorganisms at high temperatures. The average values of hb were 3.25 to 3.63 Kcal/g-COD-removed for the artificial wastewater. The values of Y0 were 0.08 to 0.19 mg-MLSS m/L-COD for the wastewater at different temperatures. The temperature effect constant (Φ) of van’t Hoff-Arrhenius law for Yo was 0.958 with ATAT pilot study, which explained typical characteristics showed in the low sludge yield of an ATAT process. The high organic matter removal capacity with low sludge yield of ATAT process have been demonstrated.
URI: http://hdl.handle.net/11455/5891
其他識別: U0005-1308201318112500
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.