Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5904
DC FieldValueLanguage
dc.contributor盧重興zh_TW
dc.contributor.author鍾艾儒zh_TW
dc.contributor.authorChung, Ai-Juen_US
dc.contributor.other環境工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:36:01Z-
dc.date.available2014-06-06T06:36:01Z-
dc.identifierU0005-2507201212102700en_US
dc.identifier.citationAaron, D., Tsouris, C., (2005) “Separation of CO2 from Flue Gas: A Review.” Separation Science and Technology, Vol. 40, pp. 321-348. An, H., Feng, B., Su, S., (2011) “CO2 capture by electrothermal swing adsorption with activated carbon fibre materials”, International Journal of Greenhouse Gas Control, Vol. 5:pp.16-25. Barrett, M.J., (1976) “Dental Observations on Australian Aborigines”, Faculty of Dentistry, The University of Adelaide, Adelaide. Ceulemans, R., Mousseau, M., (1994) “Effects of elevated atmospheric CO2 on woody plants”, New Phytologist, Vol. 127: pp. 3. Chuang, C.L., Chiang, P.C., Chang, E.E., (2003) “Modeling VOCs adsorption onto activated carbon”, Chemosphere, Vol. 53: pp. 17-27. Choi, S., Drese, J.H., Jones, C.W., (2009) “Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources”, ChemSusChem, Vol. 2: pp.796–854. Clark, M.M., (1996) “Transport modeling for environmental engineering and scientists”, John Wiley & Sons, Inc., New York, U.S.A. Deng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., Wang B., Yaghi, O. M., (2010) “Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks”, Science, Vol. 327:pp. 846-850. Ebnera, A.D., Rittera, J.A., (2009) “State-of-the-art Adsorption and Membrane Separation Processes for Carbon Dioxide Production from Carbon Dioxide Emitting Industries.”, Sep. Sci. Technol., 44, 1273. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried H., Srivastava, R.D., (2008) “Advances in CO2 capture technology - The U.S. Department of Energy’s Carbon Sequestration Program”, International Journal of Greenhouse Gas Control, Vol. 2:pp. 9-20. Su, F., Lu, C., Chen, H.S., (2011) “Adsorption, desorption, and thermodynamic studies of CO2 with high-amine-loaded multiwalled carbon nanotubes”, Langmuir, Vol. 27:pp. 8090–8098 Gray, M.L., Champagne, K.J., Fauth, D., Baltrus, J.P., Pennline, H., (2008) “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”, International Journal of Greenhouse Gas Control, Vol. 2: pp. 3-8. Gupta, M., Coyle, I.K., (2003) “Thambimuthu, Strawman document for CO2 capture and storage(CC&S) technology Roadmap, 1st Canadian CC&S Technology Roadmap Workshop”, Calgary, Alberta, Canada, 6-17. Intergovernmental Panel on Climate Change (IPCC) (2005), Special Report on Carbon Dioxide Capture and Storage, available at http://www.ipcc.ch/activity/srccs/index.htm Intergovernmental Panel on Climate Change (IPCC) (2007), The Physical Science Basis, Cambridge University Press. Kerr, R., (2007) “Climate change: Global warming is changing the world”, Science, Vol. 13:pp.188-190. Kim, Y.A., Hayashi, T., Endo, M., Kaburagi, Y., Tsukada, T., Shan, J., Osato, K., Tsuruoka, S., (2005) “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method”, Carbon, Vol.43: pp. 2243-2250. Knowles, G.P., Delaney, S.W., Chaffee, A.L., (2006) “Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents”, Industrial & Engineering Chemistry Research, Vol. 45: pp. 2626-2633. Koornneef, J., Ramirez, A., Harmelen, T.V., Horsssen, A.V., Turkenburg, W., Faaij, A., (2010) “The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union”, Atmospheric Environment, Vol. 44:pp. 1369-1385. Kyoto Protocol to the United Nations Framework Convention on Climate Change, United Nations, (1998) Lax, D., (1954) “Weak solutions of nonlinear hyperbolic equations and their numerical computations”, Communications on Pure and Applied Mathematics, Vol. 7: pp. 159-193. Li, X., Hagaman, E., Tsouris, C., Lee, J.W., (2003) “Removal of Carbon Dioxide from Flue Gas by Ammonia Carbonation in the Gas Phase”, Energy and Fuels, Vol. 17: pp. 67-74. Lu, C., Bai, H., Wu, B., Su, F., Hwang, J.F., (2008) “Comparative study of CO2 capture by carbon nanotubes, activated carbon and zeolites”, Energy Fuels, Vol. 22: pp. 3050-3056. Lu, C., Su, F., Hsu, S. C., Chen, W., Bai, H., Hwang, J. F., Lee, H. H., (2009) “Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles”, Fuel Processing Technology, Vol. 90: pp. 1543-1549. Lu, C., Bai, H., Su, F., Chen, W., Hwang, J.F., Lee, H.H., (2010) “Adsorption of CO2 Dioxide from Gas Streams via Mesoporous Spherical-Silica Particles”, Journal of the Air and Waste Management Association, Vol. 60: pp.1047-3289. Ma, Z., Kyotani, T. and Tomita, A., (2002) “S ynthesis methods for preparing microporous carbons with a structural regularity of zeolite Y”, Elsevier Science Carbon, Vol. 40:pp. 2367-2374. Metz, B., Davidson, O., Coninck, H. D., Loos, M., Meyer, L., (2005) “Special Report on Carbon Dioxide Capture and Storage”, Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY. Na, B.K., Lee, H., Koo, K.K., Song H.K., (2002) “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process To Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Industrial & Engineering Chemistry Research, Vol.41: pp. 5498-5503. Ronald, J. G., David, A. H., Colin, B. N., Edward, A. R., (1986) “Chemistry”, Allyn and Bacon, New York. Ruthven, D.M., (1984)“Principles of adsorption and adsorption process”, John Wiley & Sons, Inc., New Jersey, U.S.A. Sayari, A., Belmabkhout, Y., Serna-Guerrero, R., (2011) “Flue gas treatment via CO2 adsorption”, Chemical Engineering Journal, In Press Shen, Ch.Zh., Liu,Z., Li, P., Yu, J.G., (2012) “Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads”, Ind. Eng. Chem. Res., Vol. 51 : pp.5011−5021 Skarstrom, C.W., (1960) “ Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, assigned to Esso Research and Engineering Company, Patent 2,944,627 ,U.S. Su, F., Lu, C., Chen, W., Bai, H., Hwang, J.F., (2009) “Capture of CO2 from flue gas via multiwalled carbon nanotubes”, Science of the Total Environment, Vol. 407: pp.3017-3023. Su, F., Lu, C., Kuo, S.H., Zeng, W., (2010) “Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites”, Energy Fuels, Vol. 24: pp. 1441-1448. Sircar, S., (2002) “Pressure Swing Adsorption”, Industrial and Engineering Chemistry Research, Vol.41: pp. 1389. Tan, C.S., Chen, J.E., (2006) “Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed”, Separation and purification technology, Vol. 49: pp. 174-180. Tsuda, T., Fujiwara, T., (1992) “Polyethyleneimine and macrocyclic polyamine silica gels acting as carbon dioxide absorbents”, J. Chem. Commun., 1659. Wang, B., Cote, A. P., Furukawa, H. O’Keeffe, M., Yaghi, O. M., (2008) “Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs”, Nature, Vol. 453:pp. 207-212. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland,A. E., Wright, L., (2008) “Progress in carbon dioxide separation and capture: A review”, Journal of Environmental Sciences, Vol. 20:pp. 14-27. Yazaydin, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., LeVan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D. B., Low, J. L., Willis R. R., (2009) “Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach”, Journal of the American Chemical Society, Vol. 131:pp. 18198-18199. Yokoyama, T., (2004) “Japanese R&D on large-scale CO2 capture”, ECI Conference on Separation Technology, Australia. Yue, M.B., Yuan C., Yi C., Xin D., Zhu J.H., (2006) “CO2 capture by as-prepared SBA-15 with an occluded organic template”, Advanced Functional Materials, Vol. 16: pp. 1717-1722. Yoshidaa, K., Kuwaharab, T., Kurokib, T., Okubob, M., (2012) “Diesel NOx aftertreatment by combined process using temperature swing adsorption, NOx reduction by nonthermal plasma, and NOx recirculation: Improvement of the recirculation process”, Journal of Hazardous Materials, http://dx.doi.org/10.1016/j.jhazmat.2012.06.026 Zhang, J., Webley, P., (2008) “Cycle Development and Design for CO2 Capture from Flue Gas by Vacuum Swing Adsorption”, Environ. Sci. Technol., Vol. 42:pp. 563–569. 徐恆文,(2007) “專題報導二氧化碳減量-二氧化碳捕獲與分離” 科學發展, Vol. 413:pp. 24-27。 陳鴻博,(2007) “以回應曲面法探討添加陽離子界面活性劑透過溶膠-凝膠法製備矽膠之影響” 碩士論文,私立中原大學,桃園。 陳君豪,(2001) “利用真空變壓吸附法濃縮及回收二氧化碳” 碩士論文,國立中央大學化學工程研究所,桃園。 陳宏碩,(2010) “3-胺基丙基三乙氧基矽烷改質奈米碳管捕捉及濃縮煙道氣中二氧化碳” 碩士論文,國立中興大學環境工程學系,台中。 黃至弘,(2007) “奈米改質材料於中高溫CO2吸附/收之研究”, 行政院國家科學委員會 黃富昌,(2004) “土壤結構及化性對有機污染物吸/脫附特性之研究” 博士論文,國立中央大學環境工程研究所,桃園。 洪文雅,(2007) “淺談溫室氣體減量實務技術” 永續產業發展雙月刊,經濟部工業局,Vol. 34:pp. 21-27。 洪正宗、許世雄、蔡銘璋、陳孟宏、沈宏俊,(2011)“富氧燃燒二氧化碳捕獲技術發展探討", 石油季刊 第47 卷第3 期 頁19~30 林俊佑,(2010) “利用變壓吸附程序濃縮氣化合成氣之氫氣及捕獲二氧化碳之模擬” 碩士論文,國立中央大學化學工程與材料工程學系,桃園。 童國倫、李雨霖、黃齡燕、陳建樺、李魁然、賴君義,(2010) “薄膜分離技術在二氧化碳分離與捕捉應用之發展” ,化工 第57卷第4期 李建佑,(2007)“利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中之二氧化碳與氫氣” 碩士論文,國立中央大學化學工程與材料研究所,桃園。 蘇峰生,(2011) “低溫二氧化碳吸附劑篩選之研究” 博士論文,國立中興大學環境工程學系,台中。en_US
dc.identifier.urihttp://hdl.handle.net/11455/5904-
dc.description.abstract本研究以雙床吸附塔填充3-胺基丙基三乙氧基矽烷(3-aminopropyl)triethoxysilane, APTS)改質奈米碳管(carbon nanotubes, CNTs),模擬實場煙道氣經除硫系統(flue gas desulfurization, FGD)前後之環境條件,進行二氧化碳(CO2)吸脫附效率測試,並作為未來實場應用之參考依據及評估其可行性。單床試驗求得CNT(APTS)於25 °C、15% CO2及無水條件下之工作吸附量為61.0 mg/g,當脫附溫度為150 °C及脫附壓力為0.1 bar時,有最佳的再生工作吸附量41.2 mg/g,且CO2濃縮率為57.9 %;經10次再生循環吸脫附試驗後,其工作吸附量仍可維持在41.5 mg/g,而CO2濃縮率則為53.1 %。於飽和相對濕度(RH=100%)環境下,當吸附溫度為25 °C時,其工作吸附量可提升至86.9 mg/g,CO2濃縮率也可提升至82%,經再生循環10次吸脫附後,工作吸附量仍可維持在68.8 mg/g,而CO2濃縮率則為69 %。當進流氣體中含有50 ppm與200 ppm 的SO2濃度時,由於CNT(APTS)會吸附些許的SO2,因此會使得吸附CO2的效能下降9至13 mg/g;而當進流氣體中含有NOx濃度時,CNT(APTS)不會吸附NOx,因此並不會影響吸附CO2的效能。CNT(APTS)於雙床吸附塔中進行連續循環吸脫附實驗,在乾式環境下進行再生循環100次,其第100次的工作吸附量為38.1 mg/g,CO2濃縮率為56.5% ;在濕式環境下,當再生循環100次時,工作吸附量可提升至63.3 mg/g,CO2濃縮率為69 %。綜合以上結果,CNT(APTS)之再生吸脫附及有效濃縮CO2,對於未來在實場的CO2捕獲及濃縮上,具開發之潛力。zh_TW
dc.description.abstractCarbon nanotubes (CNTs) were modified by 3-aminopropyltriethoxysilane (APTS) and were employed as sorbents of CO2 from gas streams by dual-bed adsorber packed. This study investigates the adsorption behavior as well as their regeneration and desorption properties in different operation conditions to increase the effect of water vapor, SO2 and NOx. The adsorption capacities (qw) of CNT(APTS) was 61.0 mg/g in dry system under 15% CO2 at 25 �C. When the TSA/VSA optimal conditions were at 150 �C and 0.1 bar, the qw decreased to 41.2 mg/g and the ratio of CO2 concentrate was 57.9 %. The qw was 41.5 mg/g and the ratio of CO2 concentrate was 53.1 % after 10 cycles. Under the same conditions with 100 %(v/v) of water content, the qw of CNT(APTS) upgraded to 86.9 mg/g and the ratio of CO2 concentrate also upgraded to 82 %. The qw was 68.8 mg/g and the ratio of CO2 concentrate was 69 % after 10 cycles. When the inflow gas contained SO2, the CNT(APTS) on the adsorption of CO2 performance degraded about 9 to 13 mg/g. When the inflow gas contained NOx, the CNT(APTS) would not affect the adsorption of CO2 performance. Using dual-bed adsorber packed to operate 100 cycles of adsorption/desorption with TSA/VSA process, the qw decreased to 38.09 mg/g and the ratio of CO2 concentrate was 56.5% under 15% CO2 at 25 �C conditions in dry system. At the same conditions with 100 % (v/v) of water content, the qw upgraded to 63.3 mg/g and the ratio of CO2 concentrate was 69%. For these reasons, CNT(APTS) is possibility of prolonged cyclic operation and promising adsorbent for CO2 capture from flue gas.en_US
dc.description.tableofcontents摘 要 i Abstract ii 目 錄 iii 圖 目 錄 v 表 目 錄 vii 參數符號表 viii 第一章 前言 1 1.1. 研究動機 1 1.2. 研究目的 2 第二章 文獻回顧 3 2.1. 全球暖化的影響 3 2.2. 二氧化碳的介紹 5 2.2.1. 二氧化碳來源及性質 5 2.2.2. 二氧化碳減量策略 6 2.2.3. 二氧化碳捕獲途徑 7 2.2.4. 二氧化碳捕獲與封存技術 11 2.3. 奈米碳管特性 16 2.4. 吸附理論 17 2.4.1. 吸附種類 17 2.4.2. 吸附影響因子 18 2.5. 變溫變壓吸脫附技術 20 2.5.1. 雙塔TSA技術 20 2.5.2. 雙塔PSA技術 21 第三章 實驗設備與方法 25 3.1. 研究流程 25 3.2. 試驗材料 27 3.2.1. 吸附材製備程序 27 3.2.2. 實驗設備與材料 28 3.3. 吸附實驗 29 3.3.1. 吸/脫附設備圖 29 3.3.2. 吸附量計算 31 3.4. 吸脫附程序 33 3.5. 特性分析與方法 34 3.5.1. 熱重分析 34 3.5.2. 比表面積分析 35 第四章 結果與討論 36 4.1. 高溫/低壓脫附再生程序 36 4.1.1. 溫度與吸附量之分析 36 4.1.2. 壓力與吸附量之分析 39 4.2. 含水率對吸脫附效率測試 41 4.2.1. 含水率循環吸脫附試驗 41 4.3. SO2對循環高溫/低壓吸脫附效率測試 44 4.3.1. SO2循環吸脫附試驗 44 4.3.2. SO2循環吸脫附TGA分析 46 4.4. NOx對循環高溫/低壓吸脫附效率測試 48 4.4.1. NOx循環吸脫附試驗 48 4.4.2. NOx循環吸脫附TGA分析 50 4.5. 雙床吸附塔連續吸脫附實驗 52 4.5.1. 乾式循環吸脫附試驗 52 4.5.2. 含水率循環吸脫附試驗 54 4.5.3.雙床吸附塔連續吸脫附比表面積及孔洞分佈分析 56 4.5.3. 雙床吸附塔連續吸脫附TGA分析 57 4.6. 成本分析 59 第五章 結論與建議 62 5.1. 結論 62 5.1. 建議 63 參考文獻 64zh_TW
dc.language.isozh_TWen_US
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507201212102700en_US
dc.subject二氧化碳捕獲zh_TW
dc.subjectCO2 captureen_US
dc.subject奈米碳管zh_TW
dc.subject雙床吸附塔zh_TW
dc.subject循環吸附zh_TW
dc.subjectcarbon nanotubesen_US
dc.subjectdual-bed adsorber packeden_US
dc.subjectregenerationen_US
dc.title雙床吸附塔填充改質多壁奈米碳管捕獲二氧化碳之研究zh_TW
dc.titleA study on CO2 capture by a dual-bed adsorber packed with modified mutiwalled carbon nanotubesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.