Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5905
標題: 高溫好氧併同厭氧系統之生物降解高濃度有機物質可行性評估
Biodegradation of High Organic Contents with an Aerobic Thermophilic Following by an Anaerobic Treatment System
作者: 沈彥勳
Shen, Yen-Hsun
關鍵字: 高溫好氧;thermophilic aerobic;厭氧消化;sCOD去除率;anaerobic digestion;sCOD removal efficiency
出版社: 環境工程學系所
引用: 王宇萱(2008)“高溫好氧處理對造紙纖維廢水之可行性初步研究” 碩士論文,國立中興大學環境工程學系,台中。 吳勇興(2004)“自發性高溫好氧處理程序之研究:系統參數測定演算法之開發”博士論文,國立中興大學環境工程學系,台中。 沈育資(2008)“高溫好氧油脂分解菌動力參數研究” 碩士論文,國立中興大學環境工程學系,台中。 林宜儒(2004)“生物固體物做為受污染土壤生物復育添加劑之可行性探討” 碩士論文,國立中興大學環境工程學系,台中。 林建三(2004)“環境工程概論” 鼎茂圖書出版股份有限公司,台北。 林慈儀(2008)“高溫好氧系統生物分解動力學及菌相分析之研究” 碩士論文,國立中興大學環境工程學系,台中。 林慧蓉(2009)“評估高溫好氧系統對高濃度有機廢水處理成效及菌相分析研究” 碩士論文,國立中興大學環境工程學系,台中。 林憶伶(2012)“高溫好氧薄膜系統對污泥中難分解有機物之處理成效評估” 碩士論文,國立中興大學環境工程學系,台中。 施善瑞(2010)“高溫好氧薄膜系統對高濃度有機廢水處理成效之研究” 碩士論文,國立中興大學環境工程學系,台中。 張雅雰(2011)“高溫好氧薄膜程序處理生物難分解有機物之研究” 碩士論文,國立中興大學環境工程學系,台中。 許以樺(2000)“以高溫好氧處理油脂廢水可行性研究” 碩士論文,國立中興大學環境工程學系,台中。 陳國誠(1991)“廢水生物處理學” 國立編譯館,台北。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程學系,台中。 Ahn, Y., E. J. Park, Y. K. Oh, S. Park, G. Webster, and A. J. Weightman (2005). "Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production." FEMS Microbiology Letters 249(1): 31-38. Aitken, M. D. and R. W. Mullennix (1992). "Another look at thermophilic anaerobic digestion of wastewater sludge." Water Environment Research 64(7): 915-919. Amann, R., H. Lemmer, and M. Wagner (1998). "Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques." FEMS Microbiology Ecology 25(3): 205-215. Angelidaki, I. and B. K. Ahring (1993). "Thermophilic anaerobic digestion of livestock waste: the effect of ammonia." Applied Microbiology and Biotechnology 38(4): 560-564. Banat, F. A., S. Prechtl, and F. Bischof. (2000). "Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol." Chemosphere 41(3): 297-302. Baker, G. C., J. J. Smith, and D. A. Cowan. (2003)"Review and re-analysis of domain-specific 16S primers." Journal of Microbiological Methods 55(3): 541-555. Beaudet, R., C. Gagnon, J. G. Bisaillon, and M. Ishaque (1990). "Microbiological aspects of aerobic thermophilic treatment of swine waste." Applied and Environmental Microbiology 56(4): 971-976. Blackburn, J. W. (2001). "Effect of swine waste concentration on energy production and profitability of aerobic thermophilic processing." Biomass and Bioenergy 21(1): 43-51. Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, R. G. J. M. Van der Lans (1990). "Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: A case study related to the microbial desulfurization of coal." Biotechnology and Bioengineering 35(11): 1111-1119. Brock, T. D. and H. Freeze (1969). "Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile." Journal of Bacteriology 98(1): 289-297. Buhr, H. and J. Andrews (1977). "The thermophilic anaerobic digestion process." Water Research 11(2): 129-143. Burt, P., M. H. Littlewood, S. F. Morgan, B. N. Dancer, and J. C. Fry (1990). "Venturi aeration and thermophilic aerobic sewage sludge digestion in small-scale reactors." Applied Microbiology and Biotechnology 33(6): 721-724. Callia, B., B. Mertoglua, K. Roestb, and B. Inancc (2006). "Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate." Bioresource Technology 97(4): 641-647. Chae, K. J., A. Janf, S. K. Yim, and I. S. Kim (2008). "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure." Bioresour Technol 99(1): 1-6. Chen, W. C., W. C. Chen, and D. S. Geng (2008). "The strategy and bioenergy potential for kitchen waste recycling in Taiwan." J. Environ. Eng. Manage 18(4): 281-287. Colt, J. and J. E. Huguenin (2002). Design and operating guide for aquaculture seawater systems, Access Online via Elsevier. Couillard, D. and S. Zhu (1993). "Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery." Environmental Pollution 79(2): 121-126. Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005). "Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor." Process Biochemistry 40(3–4): 1125-1129. Dorigo, U., L. Volatier, and J. F. Humbert (2005). "Molecular approaches to the assessment of biodiversity in aquatic microbial communities." Water Research 39(11): 2207-2218. Fezzani, B. and R. B. Cheikh (2010). "Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature." Bioresource Technology 101(6): 1628-1634. Fox, P. and F. G. Pohland (1994). "Anaerobic treatment applications and fundamentals: substrate specificity during phase separation." Water Environment Research 66(5): 716-724. Ghosh, S., K. Buoy, L. Dressel, T. Miller, G. Wilcox, and D. Loos (1995). "Pilot-and full-scale two-phase anaerobic digestion of municipal sludge." Water Environment Research: 206-214. Gorecki, J., G. Bortone, and A. Tilche. (1993). "Anaerobic treatment of the centrifuged solid fraction of piggery wastewater in an inclined plug flow reactor." Water Science and Technology 28(2): 107-114. Grunditz, C. and G. Dalhammar (2001). "Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter." Water Research 35(2): 433-440. Han, Y. and R. R. Dague (1997). "Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge." Water Environment Research: 1139-1143. Harris, W. L. and R. R. Dague (1993). "Comparative performance of anaerobic filters at mesophilic and thermophilic temperatures." Water Environment Research: 764-771. Hashimoto, A. G. (1983). "Conversion of straw–manure mixtures to methane at mesophilic and thermophilic temperatures." Biotechnology and Bioengineering 25(1): 185-200. Heinonen-Tanski, H., T. Kiuru, J. Ruuskanen, K. Korhonen, J. Koivunen, and A. Ruokoja‥rvi (2005). "Thermophilic aeration of cattle slurry with whey and/or jam wastes." Bioresource Technology 96(2): 247-252. Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter (1982). "Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen." Archives of Microbiology 132(1): 47-50. Jahren, S., J. Rintala, and H. Odegaard (2002). "Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions." Water Research 36(4): 1067-1075. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983). "Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent." Archives of Microbiology 136(4): 254-261. Juteau, P., D. Tremblay, C.B. Ould-Moulaye, J. G. Bisaillon, R. Beaudet (2004). "Swine waste treatment by self-heating aerobic thermophilic bioreactors." Water Research 38(3): 539-546. Juteau, P. (2006). "Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste." Livestock Science 102(3): 187-196. Krugel, S., L. Nemeth, and C. Peddie. (1998). "Extending thermophilic anaerobic digestion for producing class a biosolids at the greater vancouver regional districts annacis island wastewater treatment plant." Water Science and Technology 38(8): 409-416. Kumar, N., J. T. Novak, and D. C. Water. (2006)"Sequential Anaerobic-Aerobic Digestion for Enhanced Volatile Solids Reduction and Nitrogen Removal."Proceedingsof the Water Environment Federation 2006.2: 1064-1081. Kurian, R., C. Acharya, G. Nakhla, and A. Bassi (2005). "Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors." Water Research 39(18): 4299-4308. Kurisu, F., H. Satoh, T. Mino, and T. Matsuo (2002). "Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method." Water Research 36(2): 429-438. LaPara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman (2001). "Aerobic Biological Treatment of a Pharmaceutical Wastewater:: Effect of Temperature on COD Removal and Bacterial Community Development." Water Research 35(18): 4417-4425. LaPara, T. M. and J. E. Alleman (1999) “Thermophilic aerobic waste treatment, review paper” Water Research 33 : 895-908. McCarty, R. D., J. Hord, and H. M. Roder. (1981). Selected Properties of Hydrogen (engineering Design Data), U.S. Department of Commerce, National Bureau of Standards. Mikkelsen, L. H. and K. Keiding (2002). "The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test." Water Research 36(12): 2931-2940. Mohaibes, M. and H. Heinonen-Tanski (2004). "Aerobic thermophilic treatment of farm slurry and food wastes." Bioresource Technology 95(3): 245-254. Morris, C. E., M. Bardin, O. Berge, P. Frey-Klett, N. Fromin, H. Girardin, and M. Troussellier (2002). "Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999." Microbiology and Molecular Biology Reviews 66(4): 592-616. Novak, J. T., S. Banjade, and S. N. Murthy (2011). "Combined anaerobic and aerobic digestion for increased solids reduction and nitrogen removal."Water Research 45.2: 618-624. Oles, J., N. Dichtl, and H. H. Niehoff (1997). "Full scale experience of two stage thermophilicimesophilic sludge digestion." Water Science and Technology 36(6): 449-456. Pace, N. R., D. A. Stahl, D. L. Lane, G. J. Olsen (1986). "The analysis of natural microbial populations by rRNA sequences." Advances in Microbial Ecology 9: 1-55. Pagilla, K. R., K. C. Craney, and W. H. Kido (1996). "Aerobic thermophilic pretreatment of mixed sludge for pathogen reduction and Nocardia control." Water Environment Research: 1093-1098. Parkin, G. and W. Owen (1986). "Fundamentals of Anaerobic Digestion of Wastewater Sludges." Journal of Environmental Engineering 112(5): 867-920. Rimkus, R. R., J. M. Ryan, and E. J. Cook (1982). "Full-scale thermophilic digestion at the West-Southwest sewage treatment works, Chicago, Illinois." Journal (Water Pollution Control Federation): 1447-1457. Rittmann, B. E., and P. L. McCarty (2001) Environmental Biotechnology: Principles and Application McGraw-Hill International Editions, Singapore16 : 339. Salles, J. F., F. A. De Souza, and J. D. van Elsas (2002). "Molecular method to assess the diversity of Burkholderia species in environmental samples." Applied and Environmental Microbiology 68(4): 1595-1603. Sawayama, S., S. Inoue, T. Minowa, K. Tsukahara, and T. Ogi (1997). "Thermochemical liquidization and anaerobic treatment of kitchen garbage." Journal of Fermentation and Bioengineering 83(5): 451-455. Shiota, N., A. Akashi, and S. Hasegawa. (2002). "A strategy in wastewater treatment process for significant reduction of excess sludge production." Water Science and Technology 45(12): 127-134. Liu, S., N. Zhu, and L. Y. Li (2011). “The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Stabilization process and mechanism” Bioresource Technology104: 266-273. Skjelhaugen, O. J. (1999). "Thermophilic aerobic reactor for processing organic liquid wastes." Water Research 33(7): 1593-1602. Song, Y. C., S. J. Kwon, and J. H. Woo (2004). "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge." Water Research 38(7): 1653-1662. Sung, S. and T. Liu (2003). "Ammonia inhibition on thermophilic anaerobic digestion." Chemosphere 53(1): 43-52. Surucu, G. A., E. S. K. Chian, and R. S. Engelbrecht. (1976). "Aerobic thermophilic treatment of high strength wastewaters." Journal Water Pollution Control Federation: 669-679. Suvilampi, J., A. Lehtomaki, and J. Rintala (2003). "Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process." Bioresource Technology 88(3): 207-214. Suvilampi, J., A. Lehtomaki, J. Rintala (2005). "Comparative study of laboratory-scale thermophilic and mesophilic activated sludge processes." Water Research 39(5): 741-750. Suvilampi, J. and J. Rintala (2002). "Comparison of Activated Sludge Processes at Different Temperatures: 35°C, 27–55°C, and 55°C." Environmental Technology 23(10): 1127-1133. Tchobanoglous, G., F. L. Burton, and D. H. Stensel (2003) Wastewater Engineering Treatment and Reuse, 4th ed. The McGraw-Hill Companies, New York, U.S.A.. Torpey, W. N., H. E. Schlenz, H. Heukelekian, and H. R. King (1955). "Loading to Failure of a Pilot High-Rate Digester [with Discussion]." Sewage and Industrial Wastes 27(2): 121-148. Torsvik, V., J. Goksoyr, and F. L. Daae (1990). "High diversity in DNA of soil bacteria." Applied and Environmental Microbiology 56(3): 782-787. Torsvik, V., L. Ovreas, and T. F. Thingstad (2002). "Prokaryotic diversity--magnitude, dynamics, and controlling factors." Science Signaling 296(5570): 1064. Tripathi, C. S. and D. Grant Allen (1999). "Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent." Water Research 33(3): 836-846. Vidal, G., A. Carvalho, R. Mendez, and J. M. Lema (2000). "Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters." Bioresource Technology 74(3): 231-239. Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007). "Landfill leachate treatment using thermophilic membrane bioreactor." Desalination 204(1–3): 8-16. Vogelaar, J., J. van Lier, A. Klapwijk, M. de Vries, and G. Lettinga (2002). "Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors – origin of effluent colloidal material." Applied Microbiology and Biotechnology 59(1): 105-111. Vogelaar, J., E. Bouwhuis, A. Klapwijk, H. Spanjers, and J. Lier (2002). "Mesophilic and thermophilic activated sludge post-treatment of paper mill process water." Water Research 36(7): 1869-1879. Vogelaar, J. C. T., A. Klapwijk, J. B. Van Lier, and W. H. Rulkens (2000). "Temperature effects on the oxygen transfer rate between 20 and 55°C." Water Research 34(3): 1037-1041. Watanabe, H., T. Kitamura, S. Ochi, and M. Ozaki (1997). "Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions." Water Science and Technology 36(6–7): 25-32. Wiegant, W. and A. De Man (1986). "Granulation of biomass in thermophilic upflow anaerobic sludge blanket reactors treating acidified wastewaters." Biotechnology and Bioengineering 28(5): 718-727. Yilmaz, T., A. Yuceer, and M. Basibuyuk (2008). "A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater." Bioresource Technology 99(1): 156-163. Zhao, Q. and G. Kugel (1996). "Thermophilic/mesophilic digestion of sewage sludge and organic wastes." Journal of Environmental Science and Health Part A 31(9): 2211-2231. Zinder, S. H., T. Anguish, and S. C. Cardwell. (1984). "Effects of temperature on methanogenesis in a thermophilic (58 C) anaerobic digestor." Applied and Environmental Microbiology 47(4): 808-813. Zita, A. and M. Hermansson (1997). "Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs." Applied and Environmental Microbiology 63(3): 1168.
摘要: 
本研究建立一高溫好氧併同厭氧的串聯處理系統,將高溫好氧反應槽置於厭氧槽中,槽中分別植入高溫好氧菌與厭氧消化菌,以評估本系統處理高濃度有機廢水的成效。高溫好氧程序雖可有效的降解高濃度有機物,但因進流水屬高濃度廢水,處理後出流水濃度仍偏高。因此,後續將利用厭氧消化程序作進一步處理,將高溫好氧程序未處理完的廢水以及高溫好氧槽的污泥進一步加以處理,期望能達到污泥減量的目的。
本系統高溫好氧併同厭氧反應槽之有效體積,好氧槽為30 L、厭氧槽為300 L,溫度分別為好氧槽控制在55oC、厭氧槽經操作後為47~50oC。系統以麩胺酸及蔗糖作為進流基質,COD約10,000 mg/L,待系統穩定後分別控制進流基濃度和HRT參數,評估系統降解高濃度有機物之可行性,並且以PCR-DGGE分別觀察好氧以及厭氧反應槽之菌相組成。
本研究結果顯示,待高溫好氧併同厭氧系統穩定後,sCOD之生物降解效率最高可達96%,厭氧槽VS削減率最高為57%。本實驗利用PCR-DGGE分析厭氧反應槽的菌相組成,顯示厭氧反應槽中含有Methanothermobacter thermautotrophicus菌,屬高溫厭氧甲烷菌。但是在系統產氣經由採樣分析,顯示甲烷含量偏低,推測厭氧反應槽中基質濃度不足,導致甲烷含量偏低。

The objective of this study was to evaluate the feasibility of an aerobic thermophilic following by an anaerobic reactor on the treatment of high concentration organic wastewater. Although thermophilic aerobic process removed high organic contents effectively, but the concentration of effluent was still high. After the thermophilic aerobic treatmmt, anaerobic digestion process digested and decomposed the sludge which had been produced from the thermophilic aerobic treatment and achieved the purpose of sludge reduction.
In this research, the aerobic reactor of 30 L was maintained at 55oC and the anaerobic reactor of 300 L was operated at 47~50oC. The high concentration organic wastewater consisted of glutamic acid sucrose to make the influent substrate of 10,000 mg-COD/L for the system. After the system reached steady state, system was operated at different the HRT and the influent concentrations to evaluate the removal efficiency. PCR-DGGE was employed to determine the microbial community of mixed culture in this reactor.
The results showed that the highest removal efficiency of the overall sCOD is up to 96%, VS reduction rate is up to 57% in anaerobic reactor. The molecular approach of PCR-DGGE was used to assess microbial diversity in an aerobic thermophilic following by an anaerobic treatment system. As a result, Methanothermobacter thermautotrophicus were certainly the dominant microorganisms in the anaerobic reactor.
URI: http://hdl.handle.net/11455/5905
其他識別: U0005-1508201310073100
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.