Please use this identifier to cite or link to this item:
標題: 奈米電極陣列用於生物感測器之研究
Nanoelectrode Arrays for Biosensing
作者: 蔡毓楨
關鍵字: 化學工程類;應用研究
奈米電極(nanoelectrode)具有少量樣品需求、質傳速度快、和低界面電容等優點,適合應用於電化學領域。因此,利用微電極的應用概念,我們將以奈米電極陣列發展生物感測器,以求更高的靈敏度與應用性。本計畫為三年計畫,第一年運用西班牙國家高等科學研究委員會合作團隊所製作出的奈米電極陣列,進行電極特性探討。首先,將以原子力顯微鏡(atomic force microscopy)與掃描式電子顯微鏡(scanning electron microscopy)觀察奈米電極陣列表面形貌。接著再使用電化學方法,探討對此奈米電極陣列對過氧化氫和β-菸鹼醯胺腺嘌呤二核甘酸的電行為,並評估此奈米電極陣列應用於生物感測器的可行性。第二年則是利用將奈米電極陣列製作葡萄糖感測器和酒精感測器。以導電高分子將酵素分散,再以電化學聚合方式將葡萄糖氧化酵素與高分子一起固定修飾於奈米電極表面,並以傅立葉紅外線光譜儀(FT-IR)確認酵素固定。接著使用AFM和SEM觀察生物複合材料的表面性質,另外再以循環伏安法(cyclic voltammetry)和安培法(amperometry)探討高分子-酵素生物複合材料的電化學催化性質,並對葡萄糖生物感測器和酒精感測器之電流訊號做探討,找出影響葡萄糖感測器效能的各參數並將之最適化。本計畫第三年將藉著先前兩年的技術與經驗,將生物感測器更延伸應用於DNA生物感測器。找出能有效地分散DNA的導電高分子,並以電化學聚合方式將DNA和高分子一起修飾奈米電極表面,再以紫外光/可見光(UV-Vis)確認DNA成功固定。此種生物複合材料表面以AFM觀察DNA分散狀態及其膜的均勻度。以循環伏安法和安培法探討其電化學催化性質,並對DNA生物感測器之電流訊號做探討,找出影響DNA感測器的各個參數並使之最適化。

There are many advantages about the nanoelectrode electrode when employed in electrochemical application such as small sample volume, fast mass transport rate, low interfacial capacitance, and so on. In principle by decreasing electrode size, study of faster electrochemical reaction should be possible. Due to the electron transfer process is less likely to be limited by the mass transport of reactant to the electrode surface at fast mass transport rate. Based on those benefits, we will develop the biosensor by using the nanoelectrode arrays which is provided by Instituto de Microelectronica de Barcelona, CNM-CSIC. At first, to estimate the probability for application of nanoelectrode arrays, we investigate the morphology of the nanoelectrode arrays by atomic force microspcopy (AFM) and scanning electron microscope (SEM). The electrocatalytic behavior of the nanoelectrode arrays toward electrochemical oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide (NADH) is studied. According to the above testing, we fabricate biosensor for detecting glucose and alcohol by nanoelectrode arrays. The electroananlytical response of the modified nanoelectrode arrays is investigated by cyclic voltammetry (CV) and amperometry method to find out the optimal value. To further application, we will fabricate DNA biosensor which is important to the diagnosis and treatment of genetic diseases. The influence of experimental parameters are explored to optimize the electroanalytical performance of the DNA sensor. The DNA and enzyme are incorporated into conducting polymers by entrapment of DNA probes and enzyme within electropolymerized polymer film. The aim of this plan is to achieve the biosensors with faster response time, simple preparation, and highly sensitivity.
其他識別: NSC100-2923-E005-001-MY3
Appears in Collections:化學工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.