Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6065
標題: 適應性反雙曲線正切函數對影像對比增強之研究
Image Contrast Enhancement Based on Adaptive Inverse Hyperbolic Tangent
作者: 游正義
Yu, Cheng-Yi
關鍵字: 影像對比增強;human visual perception;適應性反雙曲線正切函數;多區段參數調整適應性反雙曲線正切函數;基於多區段參數調整的適應性反雙曲線正切函數之對比限制的適應性區域直方圖等化調變法;image contrast enhancement;Adaptive Inverse Hyperbolic Tangent (AIHT);Multi-Segment parameter adjustment of Adaptive Inverse Hyperbolic Tangent (MSAIHT);Contrast-limited adaptive histogram equalization (CLAHE) modulation based on MSAIHT contrast enhancement (MSAIHT⊕CLAHE)
出版社: 電機工程學系所
引用: [1] Y. Monobe, H. Yamashita, T. Kurosawa, and H. Kotera, “Dynamic range compression preserving local image contrast for digital video camera,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 1-10, 2005. [2] F. A. Dunn, M. J. Lankheet, and F. Rieke, “Light adaptation in cone vision involves switching between receptor and postreceptor sites,” Nature, vol. 449, no. 7162, pp. 603-606, 2007. [3] G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthalmologica, vol. 13, supplement 6, pp. 1-103, 1935. [4] C. Y. Yu, Y. Y. Chang, T. W. Yu, Y. C. Chen, and D. Y. Jiang, “A local-based adaptive adjustment algorithm for digital images,” Proceedings of the 2nd Cross-Strait Technology, Humanity Education and Academy-Industry Cooperation Conference, pp. 637-643, 2008. [5] T. W. Yu, S. S. Su, C. Y. Yu, C. Y. Lin, and Y. Y. Chang, “Adaptive displaying scenes for real-time image,” Proceedings of the 3rd Intelligent Living Technology Conference, pp. 731-737, 2008. [6] R. W. Rodiek (1988), “The primate retina”, Comparative Primate Biology Vol. 4 of Neurosciences, pp. 203-278, New York: A.R. Liss. [7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. [8] D. Garvey, “Perceptual strategies for purposive vision,” Technical Note 117, AI Center, SRI International, 1976. [9] C. Y. Yu, Y. C. Ouyang, C. M. Wang, C. I. Chang, and Z. W. Yu, “Contrast adjustment in displaying scenes using inverse hyperbolic function,” Proceedings of the 22th IPPR Conference on Computer Vision, Graphics, and Image Processing, pp. 1020-1027, 2009. [10] M. J. T. Smith and A. Docef, “A study guide for digital image processing,” Scientific Publishers, Georgia, 1999. [11] X. Wang, B. S. Wong , C. S. Tan , Y. G. Low and C. G. Tui, “Defects detection in magnetic particle inspection application using image processing techniques,” NDT 2010 Conference, pp. 1-13,2010. [12] S. S. Al-amri, N. V. Kalyankar, S. D. Khamitkar, “Linear and non-linear contrast enhancement image,” IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.2, pp.139-143, 2010 [13] S. D. Chen and A. R. Ramli, “Preserving brightness in histogram equalization based contrast enhancement techniques,” Digital Signal Processing, vol. 14, pp.413-428, 2004. [14] ERDAS, Inc., “Overview of erdas imagine 8.2”, ERDAS, Inc. Atlanta, Georgia, pp. 25-35, 1995. [15] Acharya and Ray, “Image processing: principles and applications,” Wiley-Inter science 2005. ISBN 0-471-71998-6 [16] Russ, “The image processing handbook: fourth edition,” CRC 2002. ISBN 0-8493-2532-3 [17] Duan and G. Qiu, “Novel histogram processing for color image enhancement”, ICIG 2004, 3rd International Conference on Image and Graphics, Hong Kong, December, pp. 18-22, 2004. [18] T. G. Stockham, “Image processing in the context of a visual model,” Proceedings of the IEEE, Vol. 60, Issue: 7, pp. 828-842, 1972, ISSN: 0018-9219. [19] F. Drago, K. Myszkowski, T. Annen and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” Proceedings of eurographics 2003, 22, 3, pp. 419-426. [20] E. P. Bennett and L. McMillan, “Video enhancement using per-pixel virtual exposures,” ACM Transactions on Graphics (TOG), ACM SIGGRAPH 2005 Paper SIGGRAPH '05. [21] A. Ford and A. Roberts. “Colour space conversions,” pp. 15-17, 1998/8/11. [22] P. Whittle, “Increments and decrements: luminance discrimination,” Vision Research 26, 10, pp. 1677-1691. [23] K. I. Naka and Rushton, “S-potentials from luminosity units in the retina of fish (cyprinidae),” W. A. H. Journal of Physiology (London) 185, 3, pp. 587-599, 1966. [24] J. Kleinschmidt and Dowling, “Intracellular recordings from gecko photoreceptors during light and dark adaptation,” J. E. Journal of General Physiology 66, 5, pp. 617-648, 1975. [25] D. C. Hood and M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” Journal of Experimental Psychology: Human Perceptual Performance 5, 3, pp. 391-405, 1979. [26] D. C. Hood, M. A. Finkelstein and Buckingham, “Psychophysical tests of models of the response function,” Vision Research 19, 4, pp. 401-406, 1979. [27] K. Perlin and E. M. Hoffert, “Hypertexture.,” Computer Graphics (Proceedings of ACM SIGGRAPH 89), ACM, 23, pp. 253-262, 1989. [28] E. L. Hall, “Almost uniform distribution for computer image enhancement,” IEEE Transactions on Computers, C-23(2):207{208, 1974. [29] D. J. Ketcham, “Real-time image enhancement techniques,” Proc. SPIE/OSA, volume 74, pages 120-125, 1976. [30] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Geer, B. H. Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, 39(3): pp. 355-368, September 1987. [31] C. Y. Yu, Y. C. Ouyang, T. W. Yu, C. I. Chang, “Multi-scale image contrast enhancement: using adaptive inverse hyperbolic tangent algorithm,” 2010 The 23th IPPR Conference on Computer Vision, Graphics, and Image Processing, pp.1149-1156, 2010. [32] C. Y. Yu, Y. C. Ouyang, H. Y. Lin, T. W. Yu, “Two-scale image contrast enhancement based on adaptive inverse hyperbolic tangent algorithm,” 2010 Internation Conference on High-Speed Circuits Design(HSCD'10), pp.-, 2010. [33] C. Y. Yu, Y. C. Ouyang, H. Y. Lin, T. W. Yu, “Three-scale image contrast enhancement based on adaptive inverse hyperbolic tangent algorithm,” The18th National Conference on Fuzzy Theory and Its Application, pp.463-469, 2010 (ISBN: 978-986-02-5865-3) [34] C. Y. Yu, Y. C. Ouyang, T. W. Yu, “Image contrast enhancement based on three-level adaptive inverse hyperbolic tangent algorithm,” Journal of the Chinese Institute of Engineers, pp.- (ISSN: 0253-3839) (SCI) (Accepted for Publication) [35] C. Y. Yu, Y. C. Ouyang, H. Y. Lin, T. W. Yu, “Four-scale image contrast enhancement based on adaptive inverse hyperbolic tangent algorithm,” 2nd World Congress on Computer Science and Information Engineering (CSIE 2011), pp. 554-559 [36] A. Laine, S. Song, and J. Fan, “Adaptive multiscale processing for contrast enhancement,” Proceedings of SPIE: Conference on Biomedical Imaging and Biomedical Visualization, San Jose, CA, 1993. [37] Y. P. Jin, L. M. Fayad and A. F. Laine, “Contrast enhancement by multiscale adaptive histogram equalization,” Proc. SPIE 4478, 206 (2001); doi:10.1117/12.449705 [38] R. C. Gonzalez, and R. E. Woods, 1992, “Digital Image Processing,” Addison-Wesley. [39] S. Pizer, J. B. Zimmerman, E. V. Staab, “Adaptive grey level assignment in CT scan display”, J Comput Assist Tomogr pp. 300-305, 1984. [40] A. P. Stefanoyiannis, L. Costaridou, S. Skiadopoulos, G. Panayiotakis (2003), “A digital equalization technique improving visualization of dense mammary gland and breast periphery in mammography,” Eur J Radiol, Vol. 45, pp. 139-149. [41] S. M. Pizer, “Psychovisual issues in the display of medical images,” Hoehne KH (ed): Pictoral Information Systems in Medicine, in Berlin, Germany, Springer-Verlag, 1985, pp 211-234. [42] E. D. Pisano, S. Zong, B. M. Hemminger, M. DeLuca, R. E. Johnston, K. Muller, M. P. Braeuning, S. M. Pizer (1998), “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms,” J Digit Imaging, Vol. 11, pp. 193-200. [43] Zuiderveld and Karel (1994), ”Contrast limited adaptive histogram equalization”, Graphics gems IV, Academic Press Professional, Inc., pp. 474-485. [44] A. Pratt, and K. William, “Digital image processing,” Wiley, N.Y., 1978. [45] A. Daskalakis, D. Cavouras, P. Bougioukos, S. Kostopoulos, P. Georgiadis, I. Kalatzis, G. Nikiforidis, “An efficient CLAHE-based, Spot-adaptive, image segmentation technique for improving microarray genes quantification,” 2nd International Conference on Experiments/Process/System Modelling/Simulation & Optimization, July, 2007. [46] S. Srinivasan, N. Balram, “Adaptive Contrast Enhancement Using Local Region Stretching,” Proc.of ASID''06, 8-12 Oct, New Delhi, pages 152-155 [47] J. Rosenman, C. A. Roe, R. Crommartie, K. E. Muller, and S. M. Pizer, “Portal film enhancement: Technique and clinical utility,” Int. J. Radiat. Oncol. Biol. Physics, pages 333-338, 1993. [48] R. Gonzalez, R. Woods, S. Eddins, “Digital image processing using MATLAB,” Pearson Prentice Hall, 2004. [49] MATLAB help, version R2010a. [50] L. Wald, “Some terms of reference in data fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 1190-1193, May 1999. [51] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Transactions on Image Processing, vol. 9, no. 5, pp. 889-896, 2000. [52] J. L. Genderen and C. Pohl, “Image fusion: Issues, techniques and applications,” Strasbourg, France, pp. 18-26, September 1994. [53] J. J. Clark and A. L. Yuille, “Data fusion for sensory information processing systems,” Kluwer Academic Publishers, 1990. [54] J. Santamaria and M. T. Gomez, “Visble-IR image fusion based on gaber wavelets decomposition,” SENER, Spain, European Optical Society Digest, 1993, Vol.3 [55] Z. Yin, A. A. Malcolm, “Thermal and visual image processing and fusion,” Machine Vision & Sensors Group, Automation Technology Division, pp. 1-6, 2000.
摘要: 
在人的視覺感知中對比度對影像的品質有很大影響。不佳的拍攝環境將影響所拍攝影像的對比度,並產生一張意想不到的影像。本研究提出一些快速且有效的影像對比增強演算法來改善在顯示場景時的對比品質,包括適應性反雙曲線正切函數(AIHT)演算法、多區段參數調整的適應性反雙曲線正切函數(MSAIHT)演算法、基於多區段參數調整的適應性反雙曲線正切函數之對比限制的適應性區域直方圖等化調變影像對比增強演算法(CLAHE⊕MSAIHT)。
適應性反雙曲線正切函數演算法是用來改善顯示一個場景的品質與對比度。因為數位相機的要求是維持焦距裡主要目標物的明亮度,例如人臉區域的亮度分佈。根據此需求,大多數的數位相機皆採用伽瑪函數(gamma function)來做為影像增強的基礎。然而,使用此種影像增強法常會造成主要目標物與背景的對比變差。為了解決這個問題,對比增強演算法被廣泛的應用於調整影像的對比,並架構於人類視覺直觀的感知上。原始影像的對比類型是使用新的判斷準則來決定。反雙曲線正切函數演算法的轉換參數是根據不同的對比類型來做適應性的調整,因此參數的調整空間就相當廣。本方法不僅維持原有的直方圖分布形狀特徵且能有效地提升影像的對比品質。
多區段參數調整是用來改善適應性反雙曲線正切函數演算法。在了解與觀察場景之細節和邊緣時它具有衆所周知的人類視覺系統(HVS)感知能力。我們的主要目標是開發一個對比增強技術來復原模糊不清且黑暗的影像,並且加強它的視覺品質。多刻度係數是編修適應性反雙曲線正切函數演算法的參數。所提出的MSAIHT方法是在AIHT演算法執行之前,先由區域平均值進行分段,然後以分段後的子段分別進行AIHT對比增強。我們顯示這個方法能提供一個方便和有效的機制去控制增強處理,且更能適應各種類型的影像。實驗結果顯示AIHT演算法能適應性地增強原始影像全域性的對比度,並同時將目標物細節突顯出來。而MSAIHT能够適應性地增強原始影像的區域性對比度,且比AIHT更能將目標物細節突顯出來。
雖然AIHT和MSAIHT演算法皆能適應性地增強原始影像的對比度,但是並沒有達到最好的對比增強效能。所以我們也提出結合MSAIHT與CLAHE之多區段參數調整的適應性反雙曲線正切函數之對比限制的適應性區域直方圖等化調變影像對比增強演算法。CLAHE演算法有好的對比增強的效能,但是過度的對比增強將導致嚴重的色差結果。我們應用MSAIHT與CLAHE演算法的優點提出多重處理的影像對比增強演算法,以達到更好的對比增強效果。

Contrast has a great influence on the quality of an image in human visual perception. A poorly-illuminated environment can significantly affect the contrast ratio, producing an unexpected image. As a sequence we have developed a fast and effective mechanism for image contrast enhancement. This mechanism includes the use of adaptive inverse hyperbolic tangent (AIHT) algorithm, Multi-Segment parameter adjustment of adaptive inverse hyperbolic tangent (MSAIHT) algorithm, and contrast-limited adaptive histogram equalization (CLAHE) modulation based on MSAIHT contrast enhancement (CLAHE⊕MSAIHT) algorithm.
The AIHT algorithm can be used to improve the display quality and contrast of a scene. In general, digital cameras must maintain the shadow in a middle range of luminance that includes a main object such as a face and a gamma function is generally used for this purpose. However, the use of gamma function has a severe weakness in that it decreases highlight contrast. To mitigate this problem, contrast enhancement algorithms have been designed to adjust contrast to tune human visual perception. The proposed AIHT algorithm can determine the contrast levels of an original image as well as parameter space for different contrast types so that not only the original histogram shape features can be preserved, but also the contrast can be enhanced effectively.
The Multi-Segment parameter adjustment is a nature extending of Adaptive Inverse Hyperbolic Tangent (MSAIHT) algorithm. It has long been known that the Human Vision System (HVS) heavily depends on detail and edge in the understanding and perception of scenes. Our main goal is to produce a contrast enhancement technique to recover an image from a blurred and darkness, also improve visual quality at the same time. Multi-scale coefficients adjustments can provide a further local refinement in detail under the Adaptive Inverse Hyperbolic Tangent algorithm. The proposed MSAIHT method is using the sub-band to calculate the local mean and local variance before the AIHT algorithm is performed. We also show that this approach is convenient and effective to do the enhancement process for a various types of images. Experimental results show that the AIHT algorithm is capable of enhancing the global contrast of the original image adaptively while extruding the details of objects simultaneously. The MSAIHT is also capable of enhancing the local contrast of the original image adaptively while extruding more on the details of objects simultaneously.
We also propose a CLAHE modulation based on MSAIHT contrast enhancement algorithm from conjugate MSAIHT and CLAHE image contrast enhance (MSAIHT⊕CLAHE) algorithm. The CLAHE has good contrast enhance performance, but excessive contrast enhance will produce the serious chromatic aberration results. We apply the MSAIHT and CLAHE advantage to present a joint multiple processes algorithm of contrast enhancement to achieve better contrast enhancement effect.
URI: http://hdl.handle.net/11455/6065
其他識別: U0005-0207201115230800
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.