Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6096
標題: 人型足球機器人之定位、行走控制與避障
Localization, Walking Control and Obstacle Avoidance of a Humanoid Soccer Robot
作者: 鄭有翔
Cheng, You-Hsiang
關鍵字: Humanoid Robot;人型機器人;Localization;Obstacle Avoidance;定位;避障
出版社: 電機工程學系所
引用: References [1] http://www.sony.net/SonyInfo/QRIO/ [2] http://world.honda.com/ASIMO/ [3] http://www.wowwee.com/robosapien/robo1/robomain.html [4] http://www.kondo-robot.com/ [5] M. Vukobratovic, B. Bomvac, D. Surla, and D. Stokiic, Biped locomotion : dynamics. stability. control and application, Springer-Verlag, 1990. [6] Y. Choi, B.J. You and S.R. Oh, “On the Stability of Indirect ZMP Controller for Biped Robot Systems,” Proceedings of 2004 IEEORSl International Conference on Intelligent Robots and Systems, pp.1966-1971, 2004. [7] K. Erbatur, A. Okazaki, K.Obiya, T. Takahashi and A. Kawamura, “A Study on the Zero Moment Point Measurement for Biped Walking Robots.” the 7th International Workshop on Advanced Motion Control, pp. 431-436, 2002. [8] F. Plestan, J.W. Grizzle, E.R.Westervelt and G. Abba, “ Stable Walking of a 7-DOF Biped Robot.” IEEE transactions on Robotics and Automation, VOL. 19, NO. 4, pp.653-668, August 2003. [9] P. Yang, X. Kong, Z.J. Liu, H. Chen, Q. Zhao and J. Liu, “ Hybrid Intelligent Joint Controller for Humanoid Robot.” Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21, pp.4188-4192, August 2005. [10] L.B. Jiang, Point-to-Point Optimal Configuration Planning and Control of an Omnidirectional Mobile Manipulator, M.S. Thesis, Department of Electrical Engineering, National Chung-Hsing University, July 2005. [11] http://www.humanoidsoccer.org/ [12] D. Esposito, “Programming WinCE 3.0 for the Pocket PC.”, Artis.Net. http://www.perfectxml.com/Conf/Wrox/Files/dinotext.pdf. [13] A.Takanishi, M. Ishida, Y. Yamazaki and I. Kato, ” The Realization of Dynamic Walking Robot WL-10RD,” in Proc. Int. Conf. Advanced Robotics, pp459-466, 1985. [14] S. Kajita, F. Kanehiro, K. Kaneko, and et al. “Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point.” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1620-1626, 2003. [15] T. Sugihara, Y. Nakamura, and H. Inoue. “Realtime Humanoid Motion Generation Through Zmp Manipulation Based on Inverted Pendulum Control,” Proc.IEEE Int. Conf. on Robotics and Automation, pp. 1404-1409, 2002. [16] C. Zhu, Y. Tomizawa, X. Luo and A. Kawamura. “Biped Walking with Variable ZMP, Frictional Constraint, and Inverted Pendulum Model.” Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, pp. 425-430, 2004. [17] Q. Huang, K.Yokoi, S. Kajita, and et al. ”Planning Walking Patterns for a Biped Robot.” IEEE Transactions on Robotics and Automation, Vol.17, NO. 3, pp.280-289, 2001. [18] M. Yagi and V. Lumelsky. “ Synthesis of Turning Pattern Trajectories for a Biped Robot in a Scene with Obstacles,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.1161-1166, 2000.
摘要: 
本論文旨在建構一全自主智慧型之嵌入式人型足球機器人。藉由機體上所掛載的個人行動數位助理機(PDA)來當作本地的影像處理中心,可實現球體目標的識別與障礙物的偵測, 並且搭配上 Nios 的馬達控制晶片與RS-232的通訊,即可組成一利用即時影像作為回授的閉迴路控制系統。進而搭配我們所研發的運動步行方式,根據影像的資訊來做出一些於足球運動時所需要的動作,舉凡前進、後退、轉彎與踢球。另一方面,根據三角測量方法,我們可利用攝影機與三個已知位置之彩色地標來計算機器人於一平坦地面的姿態,再結合增廣型卡爾曼濾波器策略來改善姿態估測的精確度。如此可使機器人得知自身於球場上的位置。最後,本文提出一個利用障礙物體外觀(顏色)來尋找障礙物中心的方法,並依據此方法所得出的障礙物中心位置來決定機器人避障之方向。許多電腦模擬與實驗數據說明所提出方法的效用。本文所發展的技術與方法可用以實現一全自主式的人型機器人足球隊。

This thesis is devoted to developing an autonomous and intelligent embedded humanoid soccer robot. With the on-board Personal Digital Assistant (PDA), the robot is able to proceed image processing and then recognize the spherical ball and the obstacle. According to the information of the image data from the PDA-based real-time image sensor, the Nios-based motor control chip is employed to achieve the desired motions, including forward walking, backward walking, turning and kicking. The triangulation method with a camera on PDA and the three given color landmarks is used to determine the robot's posture and coordinate. Further, an extended Kalman filter (EKF) algorithm is employed for improving estimation accuracy. Finally, an appearance-based obstacle avoidance method is presented. According to the center of the found obstacle, one can determine the direction of the robot to avoid the obstacle. Several computer simulations and experiment results are conducted to verify the efficacy of the proposed method. The proposed methods and techniques can be used to develop a humanoid soccer robot team.
URI: http://hdl.handle.net/11455/6096
其他識別: U0005-0208200614074000
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.