Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6147
標題: 用於AMOLED面板技術之關鍵元件模擬研究:OLED元件與IGZO TFT 元件
Simulation Study for key devices used in AMOLED Technology: OLED and IGZO TFT Devices
作者: 尤惠瑩
Yu, Hui-Ying
關鍵字: TCAD;模擬;AMOLED;OLED;a-IGZO TFTs;主動式矩陣;有機發光二極體;氧化物半導體
出版社: 電機工程學系所
引用: [1] 陳金鑫,黃孝文著, 〝OLED夢幻顯示器,OLED材料與元件,〞pp.1-5, 五南圖書出版公司, 2009. [2] Martin Pope, Charles E.Swenberg, 〝Electronic Processes in Organic Crystals and Polymers,〞pp. 26-27, Oxford science publications, 1999. [3] C.W. Tang and S.A. VanSlyke, 〝Organic electroluminescent diodes,〞 Appl. Phys. Lett., vol. 51, pp. 913, 1987. [4] C.W. Tang, S.A. VanSlyke and C.H. Chen, 〝Electroluminescence of doped organic thin films,〞 J. Appl. Phys., vol. 65, pp. 3610, 1989. [5] 城戶淳二著, 王政友譯, 〝有機EL Organic Electroluminescence,〞世茂出版社, pp. 121-123, 2005. [6] http://psroc.phys.ntu.edu.tw/bimonth/v23/307.pdf [7] 拓墣產業研究所, 〝奮力破繭而出的OLED產業剖析,〞pp. 80-81, 拓墣科技股份有限公司, 2010年3月. [8] Hideo Hosono, 〝Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,〞Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006. [9] E.P. Denton, H. Rawson, 〝Vanadate Glasses,〞 J.E. Stanworth, Nature, vol. 173, pp. 1030-1032, 1954. [10] Toshio Kamiya, Kenji Nomura and Hideo Hosono, 〝Present status of amorphous In–Ga–Zn–O thin-film transistors,〞 Sci. Technol. Adv. Mater. vol. 11, pp. 0443052010, 2010. [11] http://www.displaysearch.com.tw/2009/NwsShow.aspx?CDE=NWS 20120426194831CMB [12] 陳金鑫,黃孝文著, 〝OLED夢幻顯示器,OLED材料與元件,〞 pp. 7-8, 五南圖書出版公司, 2009. [13] Shinya Saeki, 〝OLED面板邁向大型螢幕之路,〞 pp. 28, Nikkei Electronics Taiwan Edition, 2010年2月. [14] V. Bulovic’, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, 〝Weak microcavity effects in organic light-emitting devices,〞PHYSICAL REVIEW B, vol. 58, pp. 3730-3740, 1998. [15] G. G. Malliaras and J. C. Scott, 〝Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes,〞 J. Appl. Phys., vol. 85, pp. 7426-7432, 1999. [16] Chih-Chien LEE, Mei-Ying CHANG, Yeung-Dong JONG, Tain-Wang HUANG, Chrong-Shyua CHU and Yih CHANG, 〝Numerical Simulation of Electrical and Optical Characteristics of Multilayer Organic Light-Emitting Devices,〞 Japanese Journal of Applied Physics, vol. 43, pp. 7560-7565, 2004. [17] Chih-Chien LEE, Yeung-Dong JONG, Ping-Tsung HUANG, Yen Chun CHEN, Peir-Jy Hu and Yih CHANG, 〝Numerical Simulation of Electrical Model for Organic Light-Emitting Devices with Fluorescent Dopant in the Emitting Layer,〞 Japanese Journal of Applied Physics, vol. 44, pp. 8147-8152, 2005. [18] Chih-Chien Lee, Mei-Ying Chang, Ping-Tsung Huang, Yen Chun Chen, Yih Chang and Shun-Wei Liu, 〝Electrical and optical simulation of organic light-emitting devices with fluorescent dopant in the emitting layer,〞 J. Appl. Phys., vol. 101, pp. 114501, 2007. [19] Shu-Hsuan Chang, Yung-Cheng Chang, Cheng-Hong Yang, Jun-Rong Chen, Yen-Kuang Kuo, 〝Numerical simulation of optical and electronic properties for multilayer organic light-emitting diodes and its application in engineering education,〞 SPIE, vol. 6134, pp. 187-196, 2006. [20] Beat Ruhstaller, Evelyne Knapp, Benjamin Perucco, Nils Reinke, Daniele Rezzonico and Felix Muller, 〝Advanced Numerical Simulation of Organic Light-emitting Devices,〞 Optoelectronic Devices and Properties,2011. [21] Albert W. Lu, J. Chan A.D. Rakic’, Alan Man Ching Ng, A . B. Djuriˇs i’c, 〝Optimization of microcavity OLED by varying the thickness of multi-layered mirror,〞 Optical and Quantum Electronics, vol. 38, pp. 1091-1099, 2007. [22] Sebastian Reineke, Karsten Walzer, and Karl Leo, 〝Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,〞 PHYSICAL REVIEW B, vol. 75, pp. 125328, 2007. [23] Jiun-Haw Lee, Kuan-Yu Chen, Chia-Chiang Hsiao, Hung-Chi Chen, Chih-Hsiang Chang, Yean-Woei Kiang, and C. C. Yang, 〝Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures,〞 J. Display Technol., vol. 2, pp. 130-137, 2006. [24] Hsing-Hung Hsieh, Toshio Kamiya, Kenji Nomura, Hideo Hosono, and Chung-Chin Wu, 〝Modeling of amorphous InGaZnO4 thin film transistor and their subgap density of states,〞 Appl. Phys. Lett., vol. 92, pp. 133503, 2008. [25] Kichan Jeon, Changiung Kim, Ihun Song, Jaechul Park, Sunil Kim, Sangwook Kim, Youngsoo Park, Jun-Hyun Park, Sangwon Lee, Dong Myong Kim and Dae Hwan Kim, 〝Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics,〞Appl. Phys. Lett., vol. 93, pp. 182102, 2008. [26] Tze-Ching Fung, Chiao-Shun Chuang, Charlene Chen, Katsumi Abe, Robert Cottle, Mark Townsend, Hideya Kumomi, and Jerzy Kanick, 〝Two-dimensional numerical simulation of radio frequence sputter amorphous In-Ga-Zn-O thin-flm transistors,〞 J. Appl. Phys., vol. 106, pp. 084511, 2009. [27] Silvaco ATLAS user manual, 2010. [28] 林維亮, 〝非晶矽碳氫特性研究,〞 國立台灣大學碩士論文, 1987 [29] Nagasaki shipyard, Machinery works 〝Microcrystalline High-Efficiency Tandem Solar Cell to Begin Production,〞 Mitsubishi Heavy Industries, Ltd. Technical Review 44, 4 , 2007. [30] Vera Cimrova’ and Dieter Neher, 〝Microcavity effects in single-layer light-emitting devices based on poly(p-phenylene vinylene)〞 J. Appl. Phys., vol. 79, pp. 3299, 1996. [31] 城戶淳二著,王政友譯, 〝有機EL Organic Electroluminescence,〞 世茂出版社, pp. 54-59, 2005. [32] 陳金鑫,黃孝文著, 〝OLED夢幻顯示器,OLED材料與元件,〞 pp. 20-49, 五南圖書出版公司, 2009. [33] S. R. Forrest, International Display Manufacturing Conference (IDMC) , 2003. [34] M.A. Lambert and P. Mark, 〝Current Injection in Solids,〞 New York: Academic, 1970. [35] M.Pope, H. Kallmann, P. Magnante, 〝Electroluminescence in Organic Crystals,〞 J. Chem. Phys., vol. 38, pp. 2042, 1963. [36] 黃建璁, 〝TCAD技術於OLED之議題:物裡調變&電特性探討,〞 國立台灣大學光電工程學研究所碩士論文, 2010. [37] J. Chan, A.D. Rakic’, Y. T. Yeow and A . B. Djuriˇsi’c, 〝Electrical and Optical Simulation of Tris(8-hydroxyquinoline) Aluminium-Based Microcavity Organic Light Emitting Diode (MOLED),〞 IEEE, 2005. [38] Jiangshan Chen, Dongge Ma, 〝Investigation of charge-carrier injection characteristics in NPB/Alq3 heterojunction devices,〞 Chemical Physics, vol. 325, pp. 225-230, 2006. [39] D. Parker, 〝Carrier tunneling and device characteristics in polymer light‐emitting diodes ,〞 J.Appl. Phys., vol. 75, pp. 1656, 1994. [40] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, 〝Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices,〞 J.Appl. Phys., vol. 86, pp. 1688, 1999. [41] T. Ishida, H. Kobayashi and Y. Nakato, 〝Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work‐function measurements,〞 J. Appl. Phys., vol. 73, pp. 4344, 1993. [42] T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, 〝Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy,〞 Appl. Phys. Lett., vol. 73, pp. 2763, 1998. [43] S.Y. Park, C.H. Lee, W.J. Song, C. Seoul, 〝Enhanced electron injection in organic light-emitting devices using Al/LiF electrodes,〞 Current Applied Physics, vol. 1, pp. 116-120, 2001. [44] 城戶淳二著, 王政友譯, 〝有機EL Organic Electroluminescence,〞 世茂出版社, pp. 118-128, 2005. [45] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature(London) 432, 488, 2004. [46] E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves,and R. Martins, Phys. Status Solidi(RRL) 1, R34, 2007. [47] H. Q.Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, 〝High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,〞Appl. Phys. Lett., vol. 86, pp. 013503, 2005. [48] H.-H. Hsieh and C.-C. Wu, 〝Amorphous ZnO transparent thin-film transistors fabricated by fully lithographic and etching processes,〞Appl. Phys. Lett., vol. 91, pp. 013502, 2007. [49] Y.-L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, 〝Room temperature deposited indium zinc oxide thin film transistors,〞Appl. Phys. Lett., vol. 90, pp. 232103, 2007. [50] 邱久容, 〝低電壓氧化物半導體a-IGZO與高分子介電層薄膜電晶體,〞國立中興大學電機工程研究所碩士論文, 2009. [51] E. A. Davis and N. F. Mott, 〝Conduction in non-crystalline system,〞 V. Conducttivity, optical absorption and photoconductivity in amorphous semiconductors Phil, Mag. 22:903-922, 1970. [52] J. Kanicki and S. Martin, 〝THIN-FILM TRANSISTORS,〞edited by Cherie R. Kagan , Paul Andry , pp. 71-137, Dekker, New York, 2003. [53] C.J. Chiu, Z.W. Pei, S.T. Chang, S.P. Chang, S.J. Chang, 〝Effect of oxygen partial pressure on electrical characteristics of amorphous indium gallium zinc oxide thin-film transistors fabricated by thermal annealing,〞Vacuum, vol. 86, pp. 246-249, 2011. [54] Minkyu Hwang, Hwa Sung Lee, Yunseok Jang, Jeong Ho Cho, Shichoon Lee, Do Hwan Kim, and Kilwon Cho, 〝Effect of Curing Conditions of a Poly(4-vinylphenol) Gate Dielectric on the Performance of a Pentacene-based Thin Film Transistor,〞 Macromolecular Research, vol. 17, pp 436-440, 2009.
摘要: 
本論文利用TCAD參數模擬實驗數據,探討應用在AMOLED的兩種關鍵元件:有機發光二極體(OLED)與a-IGZO薄膜電晶體(TFTs)。在有機發光二極體方面,模擬單層結構(Al/Alq3/Al)OLED、雙層結構(ITO/NPB/Alq3/Al)OLED與三層結構(ITO/CuPc/NPB/Alq3/LiF/Al),詳細討論電洞傳輸層(NPB)、陰極、陽極以及有機能態缺陷參數對OLED特性之效應。
在a-IGZO 薄膜電晶體(TFTs)方面,以台大發表在APPLIED PHYSICS LETTERS( vol. 92,2008)上之研究為藍本,聚焦在探討兩種型式的a-IGZO薄膜電晶體(TFTs):空乏型(Depletion model)與增強型(Enhance model)模組,且研究這兩種模組之能態缺陷密度在band-tail states 與 deep-gap states對電流特性的影響,再與一般傳統a-Si:H材料做比較。此外,將a-IGZO 薄膜電晶體(TFTs)的閘極介電層改為有機材料Poly(4-Vinylphenol)PVP,並研究其電流特性。

In this thesis, we use TCAD tool to investigate the two key devices used in AMOLED technology: Organic Light Emitting Diode (OLED) and a-IGZO Thin-Film-Transistor. On the side of OLED, we simulate single layer OLED and double layer OLED as well as triple layer OLED, then study in detail how the characteristics of OLED would be affected by HTL(NPB), cathode, anode and the trap state parameters of organic material.
For a-IGZO TFTs, taking the National Taiwan University research work published in APPLIED PHYSICS LETTERS (vol. 92, 2008) as reference, we study two models of Depletion model and Enhance model for the a-IGZO TFTs. The aim is to compare the differences between conventional material a-Si:H and a-IGZO by means of using TCAD tool to adjust optimized fitting parameters with experiment data, and to discuss the effect of subgap DOSs including band-tail states and deep-gap states on current-voltage characteristics in detail. In addition, the other main topic for a-IGZO TFTs is to analyze current characteristic after the substitution of PVP for SiO2 in gate dielectric layer.
URI: http://hdl.handle.net/11455/6147
其他識別: U0005-0407201213295300
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.