Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6221
標題: 工業程序之適應預估控制器設計及實現
Design and Implementation of Adaptive Predictive Controllers for Industrial Processes
作者: 呂奇璜
Lu, Chi-Huang
關鍵字: predictive control;預估控制;industrial processes;工業程序
出版社: 電機工程學系所
引用: Bibliography [1] M. A. Henson and D. E. Seborg, Nonlinear Process Control, Prentice-Hall, New Jersey, 1997. [2] D. W. Clarke, “Application of generalized predictive control to industrial processes,” IEEE Control Systems Magazine, vol. 8, pp. 49-55, 1988. [3] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control Systems Magazine, vol. 4, pp. 38-52, 2000. [4] F. Allgower and A. Zheng, Nonlinear Model Predictive Control, Birkhauser Verlag, Germany, 2000. [5] B. Kouvaritakis and M. Cannon, Nonlinear Predictive Control - Theory and Practice, IEE, London, 2001. [6] S. Huang, K. K. Tan, and T.H. Lee, Applied Predictive Control, Springer-Verlag, London, 2002. [7] G. D. Nicolao, L. Magi, and R. Scattolini, “Stabilizing predictive control of nonlinear ARX Models,” Automatica, vol. 33, no.9, pp. 1691-1697, 1997. [8] W. H. Chen, D. J. Balance, and P. J. Gawthrop, J. J. Gribble, J. O'Reilly, “Nonlinear PID predictive controller,” IEE Proceedings-Control Theory and Applications, vol.146, no.6, pp. 603-611, 1999. [9] S. Kanev and M. Verhaegen, “Controller reconfiguration for non-linear systems,” Control Engineering Practice, vol. 8, pp. 1223-1235, 2000. [10] Y. Cao, “A formulation of nonlinear model predictive control using automatic differentiation,” Journal of Process Control, vol. 15, pp. 851-858, 2005. [11] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4-26, 1990. [12] K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization of dynamical systems containing neural networks,” IEEE Transactions on Neural Networks, vol. 2, no. 3, pp. 252-262, 1991. [13] F. C. Chen and H. K. Khalil, “Adaptive control of class of nonlinear discrete-time systems using neural networks,” IEEE Transactions on Automatic Control, vol. 40, no. 5, pp. 791-804, 1995. [14] F. J. Lin, T. S. Lee, and C. H. Lin, “Robust controller design with recurrent neural network for linear synchronous motor drive,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 456-470, 2003. [15] Y. Tan and R. D. Keyser, “Auto-tuning PID control using neural predictor to compensate large time-delay,” IEEE Int. Conf. Contr. Appl., pp. 1429-1434, 1994. [16] A. G. Palos, S. Parthasarathy, and A. F. Atiya, “Neural-predictive process control using on-line controller adaptation,” IEEE Trans. Contr. Syst. Technol., vol. 9, no. 5, pp. 741-755, 2001. [17] J. Q. Huang and F. L. Lewis, “Neural-network predictive control for nonlinear dynamic systems with time-delay,” IEEE Trans. Neural Networks, vol. 14, no. 2, pp. 377-389, 2003. [18] X. Wang and G. Peng, “Modeling and control for pneumatic manipulator based on dynamic neural network,” IEEE Int. Conf. Syst. Man Cybern., pp. 2231-2236, 2003. [19] K. Y. Zhu and X. F. Qin, “Robust nonlinear predictive control with neural network compensator,” in Proc. 35th Conf. Decision Contr., Kobe, Japan, pp. 3816-3817, 1996. [20] Q. Zhu and L. Guo, “Stable adaptive neurocontrol for nonlinear discrete-time system,” IEEE Trans. Neural Networks, vol. 15, no. 3, pp. 653-662, 2004. [21] S. Mollov, R. Babuška, J. Abonyi, and H. B. Verbruggen, “Effective optimization for fuzzy model predictive control,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 5, pp. 661-675, 2004. [22] J. M. Sousa, “Optimization issues in predictive control with fuzzy objective functions,” International Journal of Intelligent System, vol. 15, pp. 879-899, 2000. [23] M. Mahfouf, D. A. Linkens, and M. F. Abbod, “Multi-objective genetic optimization of GPC and SOFLC tuning parameters using a fuzzy-based ranking method,” IEE Proceedings-Control Theory and Applications, vol. 147, no. 3, pp. 344-354, 2000. [24] J. M. D. C. Sousa, and U. Kaymak, “Model prediction control using fuzzy decision functions,” IEEE Transactions on System, Man, and Cybernetics-part B: Cybernetics, vol. 31, no. 1, pp. 54-65, 2001. [25] E. Ali, “Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic,” Journal of Process Control, vol. 13, pp. 383-396, 2003. [26] A. Flores, D. Sáez, J. Araya, M. Berenguel, and A. Cipriano, “Fuzzy predictive control of a solar power plant,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 1, pp. 58-68, 2005. [27] C. F. Juang and C.T. Lin, “A recurrent self-organizing neural fuzzy inference network,” IEEE Transactions on Neural Networks, vol. 10, no. 4, pp. 828-845, 1999. [28] F. J. Lin and R. J. Wai, “Hybrid Control using recurrent fuzzy neural network for linear-induction motor servo motor,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 1, pp. 102-115, 2001. [29] S. M. Zhou and L. D. Xu, “A new type of recurrent fuzzy neural network for modeling dynamic systems,” Knowledge-Based Systems, vol. 14, pp. 243-251, 2001. [30] P. A. Mastorocostas and J. B. Theocharis, “An orthogonal least-squares method for recurrent fuzzy-neural modeling,” Fuzzy Sets and Systems, vol. 140, pp. 285-300, 2003. [31] Y. M. Zhang and R. Kovacevic, “Neurofuzzy model-based predictive control of weld fusion zone geometry,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 389-401, 1998. [32] X. Li, Z. Chen, and Z. Yuan, “Generalized predictive control using fuzzy neural networks in T-S model,” Proceeding of the 3th World Congress on Intelligent Control and Automation, Hefei, P.R. China, pp. 885-889, 2000. [33] J. Zhang and A. J. Morris, “Recurrent neural-fuzzy networks for nonlinear process modeling,” IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 313-326, 1999. [34] P. E. McDermott and D. A. Mellichamp, “A decoupling pole-placement self-tuning controller for a class of multivariable processes,” Optimal Control Applications and Methods, vol. 7, pp. 55-79. 1986. [35] X. F. Qin, K. Y. Zhu, and T. Y. Chai, “Robust adaptive decoupling design for generalized predictive control with neural network,” In Proc. 35th Decision and Control Conf., Kobe, Japan, pp. 2426-2431, 1996. [36] T. Y. Chai, “A self-tuning decoupling controller for a class of multivariable processes,” IEEE Trans. Automat. Contr., vol. 33, pp. 767-771, 1988. [37] M. Khalid, S. Omatu, and R. Yusof, “MIMO furnace control with neural network,” IEEE Trans. Contr. Syst. Technol., vol. 1, pp. 238-245, 1993. [38] K. L. Shi, T. F. Chan, and S. L. Ho, “Direct self control of induction motor based on neural network,” IEEE Trans. Ind. Applicat., vol. 37, no. 5, pp. 1290-1298, 2001. [39] C. C. Hsiao, S. F. Su, T. T. Lee, C.C. Chuang, “Hybrid compensation control for affine TSK fuzzy control systems,” IEEE Transactions on System, Man, and Cybernetics-part B: Cybernetics, vol. 34, no. 4, pp. 1865-1873, 2004. [40] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976. [41] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 4, pp. 349-366, 2000. [42] C. J. Lin and C. H. Chen, “A compensation-based recurrent fuzzy neural network for dynamic system identification,” European Journal of Operational Research, vol. 172, pp. 696-715, 2006. [43] K. J. Åström, B. Wittenmark, Adaptive Control, Addison-Wesley, New Jersey, 1995. [44] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural networks for dynamical system control,” IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 144-156, 1995. [45] K. R. Sales and S. A. Billings, “Self-tuning control of nonlinear ARMAX model,” International Journal of Control, vol. 51, pp. 753-769, 1990. [46] M. S. Ahmed, “Neural-net-based direct adaptive control for a class nonlinear plants,” IEEE Transactions on Automatic Control, vol. 45, no. 1, pp. 119-124, 2000. [47] J. Hu, K. Kumamaru, and K. Hirasawa, “A quasi-ARMAX approach to modeling of non-linear systems,” Int. J. Control, vol. 74, no. 18, pp. 1754-1766, 2001. [48] C. H. Lu and C. C. Tsai, “Adaptive decoupling predictive temperature control for an extrusion barrel in a plastic injection molding process,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 968-975, 2001. [49] J. M. Maciejowski, Predictive Control with Constrain. Prentice-Hall, New Jersey, 2002. [50] H. N. Robert, Neurocomputing, Addison-Wesley, New York, 1991. [51] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems, Prentice-Hall, New Jersey, 1999. [52] Y. Tan, and A. V. Cauwenberghe, “Neural-network-based d-step-ahead predictors for nonlinear systems with time delay,” Engineering applications of artificial intelligence, vol. 12, pp. 21-35, 1999. [53] S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules, “Nonlinear model predictive control using neural networks,” IEEE Control Systems Magazine, no.3, pp. 53-62, June 2000. [54] M. G. Simões, J. L. M. Tiquilloca, and H. M. Morishita, “Neural-network-based prediction of mooring forces in floating production storage and offloading systems,” IEEE Trans. Ind. Applicat., vol. 38, no. 2, pp. 457-466, 2002. [55] C. H. Lu, and C. C. Tsai, “Adaptive predictive control for industrial multivariable process,” in Proc. 7th International Conference on Mechatronics Technology, Taipei, Taiwan, pp. 203-208, 2003.
摘要: 
本論文的目的是發展工業程序之控制器設計方法與其實現技術。本文採用類神經網路與模糊系統來設計預估性能指標最小化之非線性控制策略,所設計之控制器能確保控制性能以及系統參數收斂,並達到系統穩定的特性。
文中設計四種控制法則,為遞迴式類神經網路的廣義預估控制(Generalized Predictive Control with Recurrent Neural Networks)、遞迴式模糊類神經網路的廣義預估控制(Generalized Predictive Control Using Recurrent Fuzzy Neural Networks)、類神經網路的解耦預估控制(Decoupling Predictive Control with Neural Networks)和多變數類神經網路預估控制(Multivariable Neural-Network Predictive Control),這些控制策略已被證明具有系統穩定特性與步級輸入時系統零穩態誤差響應。
針對工業程序所提設計之控制器,其系統參數估測與控制法則均被整合成即時適應預估控制演算法,並以PC-based技術實現而應用在可變頻率油冷卻機(Variable-Frequency Oil-Cooling Machine),或以德州儀器(Texas Instruments)生產之TMS320C31數位信號處理器(DSP)以實現應用在射出成型機(Plastic Injection Molding Machine)。由實驗數據可證實本論文所提方法,在工業程序設備其設定點與負載變動下具有良好控制性能。

Abstract

This dissertation presents design and implementation of adaptive predictive controllers for industrial processes. The nonlinear control strategies using neural networks and fuzzy systems are derived based on the minimization of predictive performance criterion. The control performance of the proposed control laws is studied as well.
Four control laws proposed in the dissertation are generalized predictive control with recurrent neural networks, generalized predictive control using recurrent fuzzy neural networks, decoupling predictive control with neural networks, and multivariable neural-network predictive control. The system stability and steady-state performance of the resulting control systems using these control algorithms have been well analyzed and proved.
The real-time adaptive predictive control algorithms for the industrial processes are proposed which have been implemented using a PC-based controller for the variable-frequency oil-cooling machine and utilizing a digital signal processor (DSP) TMS320C31 from Texas Instruments for the plastic injection-molding machine. Through experimental results, these proposed methods have been shown powerful in achieving the performance specifications under setpoint and load changes.
URI: http://hdl.handle.net/11455/6221
其他識別: U0005-0902200715563300
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.