Please use this identifier to cite or link to this item:
標題: 應用於無線區域網路802.11a與60GHz毫米波之功率放大器設計
The Power Amplifier Design for WLAN 802.11a and 60GHz Millimeter-Wave Applications
作者: 吳明蔚
Wu, Ming-Wei
關鍵字: CMOS;CMOS;CS;GaAs;IEEE WLAN 802.11a;IEEE WPAN 802.15.3c;Lange coupler;millimeter wave;power amplifier;power combination technique;共源極放大器;GaAs;IEEE WLAN 802.11a;IEEE WPAN 802.15.3c;藍基耦合器;毫米波;功率放大器;功率結合
出版社: 電機工程學系所
引用: [1] B. Razavi, “RF Microelectronics,” Prentice Hall, 1997. [2] 柯柏丞,”應用於雙頻帶系統之本地振盪訊號源電路設計”國立中興大學電機工程研究所碩士論文,中華民國九十七年。 [3] D-Link技術團隊,”無線區域網路技術白皮書”,松崗,2005。 [4] 林育聖,”60-GHz與26-/77-GHz 雙頻帶CMOS被動元件及主動濾波器之研製”國立成功大學電機工程研究所碩士論文,中華民國九十八年。 [5] A. Bourdouz, J. Nsenga, W. Van Thillo, F. Horlin, and L. Van der Perre, “Air Interface and Physical Layer Techniques for 60GHz WPANs,” Communucations and Vehicular Technology Symp, pp.112-146, Nov. 2006. [6] B. Sklar, “Digital Communications: Fundamental and Appllications, 2nd edition,” Prentice Hall, pp. 249, 2001. [7] [8] Steve C. Cripps, “RF power amplifiers for wireless communications,” Artech House, 2006. [9] David M. Pozar, “Microwave engineering 3/e,” Willy, 2005. [10] M. L.Edwards and J. H. Sinksy, “A new criteria for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-40, pp. 976-981, July 1982. [11] P. Reynaert, and M. Steyaert, “RF power amplifiers for mobile communications,” Springer, 2006. [12] 廖哲宏,” 應用於IEEE802.11a WLAN之5.7GHz CMOS射頻接收機及功率放大器RFICs”國立成功大學電機工程研究所碩士論文,中華民國九十二年。 [13] 林信雨,”應用在無線通訊之2.4GHz低雜訊/功率放大器型主動微帶天線的設計”國立成功大學電機工程研究所碩士論文,中華民國八十五年。 [14] D. K. Sheffer and T. H. Lee, “Corrections to “A 1.5 V, 1.5 GHz CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1397 - 1398, Jun. 2005. [15] H. Song, H. Kim, K. Han, and J. Choi, “A Sub-2 dB NF Dual-Band CMOS LNA for CDMA/WCDMA Applications,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, Mar. 2008. [16] W. Zhang, ES. Khoo, and T. Tear, “A Low Voltage Fully-Integrated 0.18um CMOS Power Amplifier for 5GHz WLAN,” European Solid-State Circuits, pp. 215 - 218, Sept. 2002. [17] TSMC Taiwan Semiconductor Manufacturing Co., LTD Document No. TA-10A5-4001 (T-018-LO-DR-001) [18] 白禮智,”覆晶式Ka頻段超外差發射機前端電路之研製”國立中央大學通訊工程研究所碩士論文,中華民國九十四年。 [19] WIN Semiconductors Co., “PP15-20 0.15μm InGaAs pHEMT power device layout design manual,” Ver.1.0.9, May, 2010. [20] W.R. Eisenstadt, and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 15, pp.483-490, Aug., 1992. [21] [22] B. C. Wadell, “Transmission line design handbook,” Artech House, 1991. [23] Inder Bahl, “Lumped elements for RF and microwave circuits,” Artech House, 2003. [24] R. A. Pucel, “Design considerations for monolithic microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 29, no. 6, pp. 513-534, June. 1981. [25] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K.Maruhashi, and H. Shimawaki, “TX and RX front-ends for the 60GHz band in 90 nm standard bulk CMOS,” in IEEE ISSCC Dig. Tech.Papers, 2008, pp. 558–559. [26] D. Chowdhury, P. Reynaert, and A. Niknejad, “A 60 GHz 1 V +12.3 dBm transformer-coupled wideband PA in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 560–561. [27] T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77GHz power amplifiers in standard 90 nm CMOS,” in IEEE ISSCC Dig.Tech. Papers, pp. 562–563, Feb. 2008. [28] D. Dawn, S. Sarkar, P. Sen, B. Perumana, D. Yeh, S. Pinel, and J. Laskar, “17-dB-gain CMOS power amplifier at 60 GHz,” in IEEE Int. Microwave Symp. Dig., 2008, pp. 859–862. [29] 砷化鎵產業發展現況, 亞東證券投資顧問股份有限公司, [30] Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002. [31] S. Kim, K. Lee, J. Lee, B. Kim, S.D. Kee, and I. Aoki, “An opmized design of distributed active transformer,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 1, pp. 380-388, Jan. 2005. [32] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371 - 383, Mar. 2002. [33] T. Larocca, Y.C. Liu, and M.C. Chang, “60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1425 – 1435, May. 2009. [34] Y.N. Jen, J.H. Tsai, T.W. Huang, and H. Wang, “Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microwave Theory and Techniques, vol. 57, no. 57, pp. 1637-1645, Jul. 2009. [35] C.Y. Law and A.V. Pham, “A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS,” in IEEE ISSCC Dig.Tech. Papers, pp. 426–428, Feb. 2010. [36] U.R. Pfeiffer and D. Goren, “A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Microwave Theory and Techniques, vol. 55, no. 5, pp. 857-865, May 2007. [37] H. Wang, R. Lai, and M. Biedenbender, G.S. Dow, B.R. Allen, “Novel W-band monolithic push-pull power amplifier,” IEEE J. Solid-State Circuits, vol. 30, no. 10, pp. 1055 – 1061, Oct. 1995. [38] Y.S. Jiang and J.H. Tsai, and H. Wang,“A W-band medium power amplifier in 90nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, Dec. 2008. [39] G. Liu, P. Haldi, T.J.K. Liu, and A.M. Niknejad, “Fully integrated CMOS power amplifier with efficiency enhancement at power back-off,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 600 – 609, Mar. 2008. [40] Y. Hamada, M. Tanomura, M. Ito, and K. Maruhashi, “A high gain 77 GHz power amplifier operating at 0.7 V based on 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, May. 2009. [41] J.W. Lee and B.S. Kim, “A K-band high-voltage four-way series-bias cascade power amplifier in 0.13μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, Jul. 2010. [42] T. Suzuki, Y. Kawano, M. Sato, T. Hirose, and K. Joshin, “60 and 77 GHz power amplifier in standard 90nm CMOS,” in IEEE ISSCC Dig.Tech. Papers, pp. 562–564, Feb. 2008. [43] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1755 – 1762, Aug. 2008. [44] R. Negra and W. Bachtold, “Lumped-element load-network design for class-E power amplifiers,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 6, pp. 2684-2690, Jun. 2006. [45] Y.Y. Woo, Y.Y. Yang, and B. Kim, “Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 5, pp. 1969-1974, May. 2006. [46] J.H. Kim, G.D. Jo, J.H. Oh, Y.H. Kim, K.C. Lee, and J.H. Jung, “Modeling and design methodology of high-efficiency class-F and class-F-1 power amplifiers,” IEEE Trans. Microwave Theory and Techniques, vol. 59, no. 1, pp. 153-165, Jan. 2011. [47] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IREI, vol. 24, no. 9, pp. 1163 - 1182, Sep. 1936. [48] L.Y. Yang, H.S. Chen, and Y.J.E. Chen, “A 2.4 GHz fully integrated cascade-cascade CMOS Doherty power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 3, Mar. 2008. [49] H. Chireix, “High power outphasing modulation,” Proc. IREI, vol. 23, no. 11, pp. 1370 - 1392, Nov. 1935. [50] S. Lee and S. Nam, “A CMOS outphasing power amplifier with integrated single-ended Chireix combiner.” IEEE Trans. Circuits Syst. II, vol. 57, no. 6, pp. 411 - 415, Jun. 2010. [51] L.R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IREI, vol. 40, pp. 803 - 806, Jul. 1952. [52] A. Katz and J. Matsuoka, “A high efficient & linear integrated PA for Ka/Q bands,” IEEE Int. Microw. Symp., TH1B-2, Long Beach, CA, 2005. [53] S.P. Stapleton and F.C. Cotescu, “An adaptive predistorter for a PA based on adjacent channel emissions,” IEEE Trans. Veh, Tech., vol. 41, no. 1, Feb. 1992. [54] J.K. Cavers, “Adaption behavior of feedforward amplifier linearizer,” IEEE Trans. Veh, Tech., vol. 44, no. 1, pp. 31-40, 1995. [55] A. Bateman and D.M. Haines, “Direct conversion transceiver design for compact low cost portable mobile radio terminals,” 39th IEEE Veh. Tech. Conf., vol. 1, no. 9, pp. 57-62, 1989. [56] Y. S. Noh and C.S. Park, “PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp. 1096 – 1099, Sep. 2002. [57] Y.J.E. Chen, C.Y. Liu, T.N. Luo, and D. Heo, “A high-efficiency CMOS RF power amplifier with automatic bias control,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 615 – 617, Nov. 2006. [58] S. Ko and J. Lin, “A novel linearizer and a fully integrated CMOS power amplifier,” Proc. of Asia-Pacific Microw. Conf., pp. 144 – 147, 2006. [59] M. Hang, S.W. Moon, S.G. Choi, T.J. Baek, B.O. Lim, D. An, M. Kim, S.D. Kim, and J.K. Rhee, “V-band CPW Balanced Medium Power Amplifier for 60 GHz Wireless LAN application,” in Proc. Asia-Pacific Microwave Conference, 2005. [60] S. Handa, E. Suematsu, H. Tanaka, Y. Motouchi, M. Yagura, A. Yamada, and H. Sato, “60GHz-band low noise amplifier and power amplifier using InGaP/GaAs HBT technology,” IEEE GaAs IC Symp. Digest, pp. 227-230, 2003.
本論文主題在於設計製作兼具線性度與效率之微波功率放大器,設計應用的頻段有IEEE WLAN 802.11a 之5.2GHz頻段與IEEE WPAN 802.15.3c之 60GHz頻段,採用了TSMC 0.18μm與90nm之CMOS製程,還有WIN GaAs 0.15μm pHEMT製程。以下依各章節進行概述並包含了各電路之設計與量測結果。
第三章主要設計一個應用於802.11a 5.2GHz頻段之全積體化0.18μm CMOS功率放大器,並分析多級功率放大器基於線性度考量之各級1-dB增益壓縮點配置情形。而電路架構為兩級的共源極放大器所組成,輸出級採用多顆電晶體並聯方式以提高輸出功率與增益。量測時在1.8V供應電壓下直流功耗為160mW,1-dB增益壓縮點輸出功率(OP1dB)為11 dBm,最大效率PAE為10.4%,線性功率增益為14.4dB,最後針對量測偏差以模型模擬進行量測結果驗證分析。
第四章製作了兩顆應用於802.15.3c之60GHz功率放大器,並且探討傳輸線的設計方法,兩顆晶片製程皆採用WIN GaAs 0.15μm pHEMT製程。第一顆晶片採兩級共源極放大器架構,在偏壓上以線性度為主要設計考量,在毫米波(Millimeter wave)之波長範圍下在晶片內部以微帶線(Microstrip line)實現所有匹配網路,量測頻率為60GHz時在5V供應電壓下直流功耗為211mW,1-dB增益壓縮點輸出功率(OP1dB)為12.3dBm,最大效率PAE為7.83%,線性功率增益為10.4dB。第二顆晶片為三級電路設計,三級在架構上分別為增益級、驅動級與功率輸出級,功率輸出級使用藍基耦合器(Lange coupler)實現功率結合技術,由此提高輸出功率。量測時有頻率漂移現象,因此功率掃描量測設定在63GHz操作頻率下。5V供應電壓下,直流功耗為472mW,1-dB增益壓縮點輸出功率(OP1dB)為13dBm,最大效率PAE為6.9%,線性功率增益為22.9dB,匹配網路也是以微帶線在晶片內部實現。
第五章以TSMC 90nm CMOS製程設計了一個應用於802.15.3c之60GHz 功率放大器。為達到足夠增益電路為三級電路設計,並且三級的偏壓準位設定由第一級開始遞減到第三級,如此可以提高整體效率又能兼顧線性度。在60GHz操作頻率下,模擬結果為:在1.2V的供應電壓下直流功耗為103mW,1-dB增益壓縮點輸出功率(OP1dB)為9dBm,最大效率PAE為19.3%,線性功率增益為10.3dB,匹配網路同樣以微帶線在晶片內部實現。

In this thesis, design of microwave power amplifiers (PAs) with both linearity and efficiency considerations is presented. Applications of our designs cover the bands including 5 GHz for IEEE WLAN 802.11a and 60GHz for IEEE WPAN 802.15.3c. The process technologies used in chip implementation are TSMC 0.18-μm CMOS, TSMC 90-nm CMOS, and WIN GaAs 0.15-μm pHEMT, respectively. The contents of this thesis are summarized as following, including circuits design and measurement results in each chapter.
In Chapter I, we brief the reaserch background and contents of this thesis.
In Chapter II, discussions about system specifications, design considerations, and design method for the power amplifiers are presented. And various types of power amplifiers are also introduced.
The subject of Chapter III is mainly focused on the design of a 5.2GHz fully integrated 0.18-μm CMOS power amplifiers for WLAN IEEE 802.11a application. The circuit architecture is cascading two common source stages, and using multiple transistors in parallel as the output stage to increase the output power and gain. The measured maximum power consumption is 160 mW under 1.8 V supply voltage. The output power of 1-dB gain compression (OP1dB) is 11 dBm. The maximum power added efficiency (PAE) is 10.4%, linear power gain is 14.4dB. Finally, we analyze the difference between post-simulation results and measurement results by a trouble- shooting and simulation model recreation process.
In Chapter IV, designs of two 60GHz power amplifiers for IEEE 802.15.3c application are presented and design methods of the transmission line are also discussed. Both designs are implemented by using WIN GaAs 0.15μm pHEMT process technology. The first chip adopts two cascading common source stages, and the main consideration of bias scheme is the linearity. We use the microstrip lines to achieve all the matching networks in the chip for the millimeter-wavelength range. The operating frequency is the 60GHz and the measured DC power consumption is 211mW under a 5 V supply voltage. The measured OP1dB of the first chip is 12.3dBm, the measured maximum PAE is 7.83%, and the linear power gain is 10.4dB. The second chip is composed of three stages, including the gain stage, the driver stage, and the output power stage. At the output power stage, the Lange couplers are adopted to achieve power dividing/combining functions and to increase the output power. Since we found there is a drift of the operating frequency, therefore the input frequency is set to 63GHz in power sweep measurements. DC consumption of the second chip is 472mW under a 5 V supply voltage. The measured OP1dB is 13dBm, the maximum PAE is 6.9%, and the linear power gain is 22.9dB. The same microstrip line is adopted for matching networks within the chip.
In Chapter V, we present a 60GHz PA for IEEE 802.15.3c application by using TSMC 90-nm CMOS process technology. In order to achieve the required gain, the circuit adopts three-stage design. The bias level subsequently decreases from the first stage, and this can improve the overall efficiency while maintaining linearity. In 60GHz frequency, the simulated DC power consumption is 103mW under 1.2V supply voltage. The simulated OP1dB is 9dBm, the maximum PAE is 19.3%, and the linear power gain is 10.3dB. Again, matching network is made of the microstrip lines in the chip.
其他識別: U0005-1608201116282300
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.