Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65830
DC FieldValueLanguage
dc.contributor蘇鴻傑zh_TW
dc.contributorHong-Jye Suen_US
dc.contributor陳明義zh_TW
dc.contributor呂福原zh_TW
dc.contributorMing-Yi Chenen_US
dc.contributorFu-Yuen Luen_US
dc.contributor.advisor歐辰雄zh_TW
dc.contributor.advisorChern-Hsiung Ouen_US
dc.contributor.author高貴珍zh_TW
dc.contributor.authorKao, Gui-Zhenen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-09T09:28:43Z-
dc.date.available2014-06-09T09:28:43Z-
dc.identifier.citation甘偉航、胡大維 (1987) 海岸防風林破壞跡地林下栽植更新試驗。林業試驗所研究報告季刊 2 (1):1-12。 王相華、郭耀綸、潘順勇 (1997) 墾丁高位珊瑚礁森林樹冠疏開對二十種樹木種子發芽的影響。台灣林業科學 12 (3):299-307。 江政人 (2004) 臺灣中部地區崩塌地植被恢復之研究。國立中興大學碩士論文。61頁。 李玟樑 (2004) 四湖工作站木麻黃防風林之林下植群結構分析。國立嘉義大學學士論文。28頁。 李遠欽 (1984) 桃園縣海岸林被害原因探討及應加強之措施。農政與農情37: 4-7。 何坤益、張怡萱、鄧書麟、莊安靖 (1996) 木麻黃防風林空隙地的更新栽植。林業試驗所簡訊 14: 13-15。 林文智、郭耀綸、陳永修、張乃航、洪富文、馬復京 (2004) 台灣南部多纳針闊葉林土壤種子庫與森林更新。台灣林業科學19 (1):33-42。 陳正祥 (1957) 氣候之分類與分區。林業叢刊第七號。國立臺灣大學農學院實驗林。174頁。 陳昌秀 (1988) 雲林縣海岸防風造林。臺灣林業 14(5): 19-29。 陳利頂、傅伯杰 (2000) 干擾的類型、特徵及其生態學意義。生態學報 20 (4) : 581-586。 陳明義、周文郅、蔡進來 (2000) 關刀溪森林生態系之倒木孔隙更新。林業研究季刊22 (1):23-32。 陳益明、蘇鴻傑等 (2002) 臺灣北部大桶山區柳杉林下層植群恢復之研究。國立臺灣大學森林學研究所博士論文。131頁。 陳財輝、呂錦明、沈慈安 (1990) 苗栗海岸地區不同齡級木麻黃防風林生長之調查。林業試驗所研究報告季刊 5(1): 17-24。 黃啟鐘、蔡竹固 (1999) 木麻黃害蟲之種類與其為害。嘉義技術學院學報62:157-164。 葉慶龍、陳子英、宋梧魁 (2004) 南仁山相思樹人工林於演替序列上物種多樣性之研究。台大實驗林研究報告 18 (3) : 229-246。 劉一新、高毓斌 (1994) 林相改良作業對臺灣南部低海拔闊葉林林分組成與結構之影響。林業試驗所研究報告季刊。9(4) : 317-329。 劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。台灣商務印書館。第11頁。第354-375頁。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院出版委員會。925頁。 蘇鴻傑、曾彥學、劉靜瑜 (2000) 玉山國家公園沙里仙溪集水區台灣雲杉林之動態與族群結構。國家公園學報 10 (1) : 95-127。 Bengtsson, J., S. G. Nillson, A.. Franc and P. Menozzi (2000) Biodiversity, dis-turbance, ecosystem function and management of European forests. Forest Ecology and Management 132: 39-50. Brosofske, K. D., J. Chen and T. R. Crow (2001) Understory vegetation and site factors: implications for a managed Wisconsin landscape. Forest Ecology and Management 146: 75-87. Carle J. and P. Holmgren (2003) Definitions Related to Planted Forests. UNFF intersessional experts meeting on the role of planted forests in sustainable forest management. 22: 1-14. Caspersen, J. P. (2004) Variation in stand mortality related to successional composition. Forest Ecology and Management 200: 149-160. Clements, F. E. (1916) Plant successional analysis of the development of vege-tation. Carnrgie institute of Washington publication. 512 pp. European Environment Agency (2001) http://glossary.eea.eu.int/EEAGlossary/S/Semi-natural_forest Garwood, N. C. (1989) Tropical soil seed banks: a review. In: Leck M. A., V. T. Parker, R. L. Simpson, editors. Ecology of soil seed bank. San Diego, C. A. Arademic Press. p149-209. Holling, C. S., D. W. Schindler, B. W. Walker and J. Roughgarden (1995) Bio-diversity in the functioning of ecosystems : an ecological synthesis In: Perrings, C., K.-G. Mäler, C. Folke, C. S. Holling and B.-O. Jasson (Eds.) , Biodiversity Loss : Economic and Ecological Issues. Cambridge Univer-sity Press: 44-83. Huang, T.-C. and Editorial Committee of the Flora of Taiwan. (eds.). (2003) Flora of Taiwan, 2nd ed. Vol. 2. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University. Taipei, Taiwan. 343pp. Ito, S., R. Nakayama and G. P. Buckley (2004) Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern kyushu, Japan. Forest Ecology and Management. 196: 213-225. Myers, G. P. , A. C. Newton and M. Orlando (2000) The influence of canopy gap size on natural regeneration of Brazil nut (Bertholletia excelsa) in Polyvia. Forest Ecology and Management 127: 119-128. Parrotta, A. J., O. H. Knowles and J. M. W. Jr. (1997) Development of floristic diversity in 10-years old restoration forest on a bauxite mined site in Amezonia. Forest Ecology and Management 99: 21-42. Pedersen, Brian S., Howard. Jessica L. (2004) The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed - age, mixed - species forest. Forest Ecology and Management 196 : 351-366. Peterson, G., Allen, C. R. and Holling, C. S. (1998) Ecological resilience, biodiversity and scale. Evcosystems 1: 6-18. Pugnaire, F. I. and R. Lázaro (2000) Seed bank and understorey species com-position in a semi-arid environment: The effect of shrub age and rainfall. Annals of Botany 86: 807-813. Oliver C. D. (1981) Forest development in North America following major disturbance. Forest Ecology and Management 3: 153 - 168. Ott, R. A. and Juday G. P. (2002) Canopy gap characteristics and their implica-tions for management in the rainforests of southeast Alaska. Forest Ecol-ogy and Management 159: 271-291 Quine, C. P. (2001) A preliminary survey of regeneration of Sitka spruce in wind-formed gaps in British planted forests. Forest Ecology and Man-agement 151: 37-12. Runkle, JR. (1982) Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology 63: 1533-1546. Takuya, K., I. Yoh and F. Naoki (1996) Forest spatial dynamics with gap ex-pansion: total gap area and gap size distribution. J. theor. Biol 180: 229-246 Watt, A. S. (1947) Pattern and process in the plant community. Journal of Ecology. 35: 1 - 22. Whitmore, T. C. (1989) Canopy gaps and the two major groups of trees. Ecol-ogy 70 (3): 536-538. Yamamoto, S. (1992) The gap theory in forest dynamics. The Botanical Society of Japan. 375-383.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/65830-
dc.description.abstract本研究在苗栗縣竹南鎮海岸林設置3個30 m × 100 m的大樣區,並將大樣區分為120個5 × 5 m2的小樣區進行植群調查以及對大樣區中的孔隙進行測量,目的在於探討孔隙對植物多樣性增加之影響。植群調查結果共記錄29科45屬49種植物,菊科、禾本科與大戟科出現的植物種數最多。 研究區中共計14個孔隙,面積範圍最小為26.93 m2,最大為453.48 m2 ,以200 m2以下的孔隙面積較多。孔隙中的植群經過群團分析後可分為:苦楝─朴樹─舖地黍型、朴樹型、構樹型等3種植群型。具有不同孔隙面積比率的5 m × 5 m小樣區內之植群可分為將不同孔隙面積比率的小樣區內之植群分為4個植群型:朴樹─舖地黍型、朴樹型、苦楝─構樹型以及構樹型。 結果證實孔隙的存在促進了海岸林下層植群的建立,舖地黍常在孔隙形成初期佔領大量面積而形成明顯的優勢,此時木本植物只有朴樹開始建立,某些已存在於林下的蔓性植物也會為了爭取孔隙中的生育地而進行競爭。在孔隙形成後期,大花咸豐草逐漸取代舖地黍等優勢植物,許多陽性木本植物的種子開始發芽,構樹的幼苗因成長較為快速而成為苗木。 孔隙的分布位置是影響朴樹幼苗分布的原因之一,更新良好的朴樹在未來可能成為已衰退的木賊葉木麻黃林下之優勢植物。藉由不同孔隙面積比率的植群分析說明構樹的生長會隨著孔隙面積比率的差異而影響數量比例,在面積比率75 %以上且生育地足夠的孔隙容易形成大面積的苗木庫以填補孔隙空間。zh_TW
dc.description.abstractThis study established three 30 m 100 m sample plots and one hundred twenty 5 5 m2 subquadrat in each sample plot for inventorying vegetation and surveying the area of expanded gaps in the costal foreat in Junan, Miaoli. The object of this study was to analysis the effect of the expanded gaps on adding plant diversity . The results inventory of vascular plant found 29 families, 45 genera, 49 species and the family with the largest number of species was Asteraceae, Poaceae and Euphorbiaceae. There were fourteen gaps in all. Gap areas were from 26.93 m2 to 453.48 m2 and many of them were small than 200 m2. According to the results of Matrix Cluster Analysis (MCA), the types of investigated vegetation in expanded gaps can be classified into as follows: Melia azedarach - Broussonetia papyrifera - Panicum repens type, Celtis sinensis type and Broussonetia papyrifera type. And the types of investigated vegetation in 5 5 m2 subquadrat with different gap area percent is classified by Matrix Cluster Analysis (MCA) into as follows: Celtis sinensis - Panicum respens type, Celtis sinensis type, Melia azedarach - Broussonetia papyrifera type and Broussonetia papyrifera type. The results proved that the existence of gap encourage understory vegetation to establish in costal forest, for example, Panicum respens often occupied lots of area to be main plant in early gap phase. In early gap phase, only one of wood plant established, which was Celtis sinensis and some of trailing plants which had lived in understory would compete against with each other for habitat in gap. In later gap phase, Bidens pilosa L. var. radiate replaced Panicum respens little by little. Many seeds of shade-intolerant woody species began to germinate and seedling of Broussonetia papyrifera grew more quickly than others due to many sapling of Broussonetia papyrifera in expanded gaps. The distribution of gaps was one of the factors affects to the establishment of the seeding of Celtis sinensis. Celtis sinensis regenerated well and may become the dominant species in degenerating Casuarina equisetifolia forest in the future. The influence of different gap area percent explain that the number of sapling of Broussonetia papyrifera changed with that and became sapling bank to fill gaps if the gap area percent up than 75 % and habitat is enough.en_US
dc.description.tableofcontents目次 Ⅰ 圖目次 Ⅱ 表目次 Ⅲ 附錄目次 Ⅳ中文摘要 Ⅴ 英文摘要 Ⅵ 壹、前言 1 貳、前人研究 4 参、研究材料與方法 11 ㄧ、研究地點 11 二、研究方法 12 肆、研究結果 13 一、下層植群結構分析 18 二、海岸林之族群結構 19 三、孔隙製造者 22 四、林分中的孔隙 24 五、孔隙區和非孔隙區的小樣區數量 29 六、各孔隙中的物種組成 30 七、不同孔隙面積比率中的物種組成 37 伍、討論 42 一、海岸林下層物種的組成分析 42 二、物種傳播的機制 43 三、海岸林目前的特性分析與狀態評估 44 四、對於海岸林未來的經營建議 44 陸、結論 46 柒、參考文獻 47 附錄ㄧ 植物名錄 52 附錄二 孔隙資料 58 附錄三 各孔隙內之物種重要値 59 附錄四 樣區一中不同孔隙面積比率下之物種重要值 62 附錄五 樣區二中不同孔隙面積比率下之物種重要值 63 附錄六 樣區三中不同孔隙面積比率下之物種重要值 64 附錄七 各樣區非孔隙處的物種重要值 65 附錄八 各樣區的物種重要値 66 樣區照片 67zh_TW
dc.language.isoen_USzh_TW
dc.publisher森林學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208200614575600en_US
dc.subjectCoastal foresten_US
dc.subject海岸林zh_TW
dc.subjectCasuarinaen_US
dc.subjectGapen_US
dc.subjectVegetationen_US
dc.subjectSuccesionen_US
dc.subject木麻黃zh_TW
dc.subject孔隙zh_TW
dc.subject植群zh_TW
dc.subject演替zh_TW
dc.title孔隙對苗栗縣海岸木麻黃林物種多樣性之影響zh_TW
dc.titleEffect of gaps on the species diversity in Casuarina plantatioins of Miaoli coasten_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:森林學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.