Please use this identifier to cite or link to this item:
標題: 土壤溫度、水勢和養分對土壤微生物呼吸的影響
Effects of soil temperature, water potential and nutrients on soil microbial respiration.
作者: 康碩容
Kang, Shuo-Jung
關鍵字: soil microbial respiration;土壤微生物呼吸;temperature;water potential;nutrients;溫度;水勢;養分
出版社: 森林學系所
引用: 林良平 (1997) 土壤微生物學。國立編譯館。 房秋蘭和沙麗清 (2006) 西雙版納熱帶季節雨林與橡膠林土壤呼吸。植物生態學報 30 (1):97-103。 郭魁士 (1997) 土壤學。中國書局。 陳全勝、李凌浩、韓興國、簡志丹 (2003) 水分對土壤呼吸的影響及機理。生態學報 23 (1):972-978。 游偉青 (2006) 疏伐對惠蓀林場杉木人工林土壤呼吸之影響。國立中興大學森林學研究所碩士論文。 楊玉盛、陳光水、董彬、王小國、謝錦升、李靈、盧豪良 (2004) 格氏栲天然林和人工林土壤呼吸對乾濕交替的響應。生態學報 24 (5):953-958。 賈丙瑞、周廣勝、王風玉、王玉輝 (2005) 土壤微生物與根系呼吸作用影響因子分析。應用生態學報 16 (8):1547-1552。 劉紹輝、方精雲 (1997) 土壤呼吸的影響因素及全球尺度下溫度的影響。生態學報 17 (5):469-476。 薛璟花、莫江明、李炯、王暉 (2005) 氮沉降增加對土壤微生物的影響。生態環境 14 (5):777-782。 Aber, J. D., K. J. Nadelhoffer, P. Steudler and J. M. Melillo (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39: 378-386. Amador, J. A. and R. D. Jones (1993) Nutrients limitations on microbial respiration in peat soils with different total phosphorous content. Soil Biology and Biochemistry 25: 793-801. Bekku, Y. S., T. Nakatsubo, A. Kume, M. Adachi and H. Koizumi (2003) Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Applied Soil Ecology 22: 205-210. Bowden, R. D., K. M., Newkirk and G. M. Rullo (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry 30: 1591-1597. Bowden, R. D., E. Davidson, K. Savage, C. Arabia and P. Steudler (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196: 43-56. Castro, M. S., W. T. Peterjohn, J. M. Melillo and P. A. Steudler (1994) Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation. Candian Journal of Forest Research 24: 9-13. Cleveland, C. C., A. R. Townsend and S. K. Schmidt (2002) Phosphorus limitation of microbial process in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5: 680-691. Conant, R. T., P. Dalla-Betta, C. C. Klopatek and J. M. Klopatek (2004) Controls on soil respiration in semiarid soils. Soil Biology and Biochemistry 36: 945-951. Dalias, P., J. M. Anderson, P. Bottner and M. Couteaux (2001) Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biology 6: 181–192. Davidson, E. A., E. Belk and R. D. Boone (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217-227. Davidson, E. A., S. E. Trumbore and R. Amundson (2000) Soil warming and organic carbon content. Nature 408: 789-790. Fang, A. B. and J. B. Moncrieff (2001) The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry 33: 155-165. Fierer, N., A. S. Allen, J. P. Schimel and P. A. Holden (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biology 9: 1322-1332. Gallardo, A. and W. H. Schlesinger (1994) Factors limiting microbial biomass in the mineral soil and forest floor of a warming temperate forest. Soil Biology and Biochemistry 26: 1409-1415. Gee, G. W. and J. W. Bauder. (1986) Particle-size Analysis. In A. L. Page et al. (eds.). Methods of soil analysis. Part 1. 2nd ed. Agronomy 9: 383 - 411. Gough, C. M. and J. R. Seiler (2004) Belowground carbon dynamics in loblolly pine (Pinus taeda) immediately following diammonium phosphate fertilization. Tree Physiology 24: 845-851. Harris R. F. (1981) Effect of water potential on microbial growth and activity. In: J. Parr et al. (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison. pp. 23-95. Jenkinson, D. S., D. E. Adams and A. Wild (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 35: 304-306. Keith, H., K. L. Jacobsen and R. J. Raison (1997) Effects of soil phosphorus availability, temperatue and moisture on soil respiration in Eucalyptus forest. Plant and Soil 190: 127–141. Kelly, J. M. and G.. S. Henderson (1978) Effects of nitrogen and phosphorus additions on deciduous litter decomposition. Soil Science Society of America Journal 42: 972–976. Kirschbaum M. U. F. (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753-760. Leiros, M. C., C. Trasar-Cepeda, S. Seoane and F. Gil-Sotres (1999) Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry 31:327-335. Linn, D. M. and J. W. Doran (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal 48: 1267-1272. Liu, H. S., L. H. Li, X. G.. Han, J. H. Huang, J. X. Sun and H. Y. Wang (2006) Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology 32: 284-292. Lloyd, J. and J. A. Taylor (1994) On the temperature dependence of soil respiration. Functional Ecology 8: 315-323. Lukito, H. P., K. Kouno and T. Ando (1998) Phosphorus requirements of microbial biomass in a Regosol and an Andosol. Soil Biology and Biochemistry 30: 865-872. MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report. MM-X-78. McLean, E. O. (1982) Soil pH and lime requirement. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 199-223. Micks, P., J. D. Aber, R. D. Boone and E. A. Davidson (2004) Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. Forest Ecology and Management 196: 57-70. Oberbauer, S. F., C. T. Gillespie, W. Cheng, R. Gebauer, S. A. Sala and J. D. Tenhunen (1992) Environmental effects on CO2 efflux from riparian tundra in the northern foothills of the Brooks Range, Alaska, U. S. A. Oecologia 92: 568-577. Oechel, W. C., G. L. Vourlitis and S. J. Hastings (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406: 978-981. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 403-427. Orchard, V. A. and F. Cook (1983) Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry 15: 447-453. Quoreshi, A. M., M. Yutaka and K. Takayoshi (2003) The role of mycorrhiza in forest ecosystem under CO2-enriched atmosphere. Eurasian Journal of Forest Research 6 (2): 171-176. Raich, J. W. and W. H. Schlesinger (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44: 81–99. Raich J. W. and C. S. Potter (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9 (1): 23-26. Rastogi, M., S. Singh and H. Pathak (2002) Emission of carbon dioxide from soil. Current Science 82 (5): 510-517. Rhoades, J. D. (1982) Cation exchange capacity. In: A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 149-157. Rustad, L. E., T. G. Huntington and R. D. Boone (2000) Controls on soil respiration: Implications for climate change. Biogeochemistry 48: 1-6. Salonius, P. O. (1983) Effects of air drying on the respiration of forest soil microbial populations. Soil Biology and Biochemistry 15: 199-203. Scheu S. (1990) Changes in microbial nutrient status during secondary succession and its modification by earthworms. Oecologia 84: 351-358. Schlesinger, W. H. (1991) Biogeochemistry: an analysis of global change. Academic Press, San Diego. Schlesinger, W. H. and J. A. Andrews (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48: 7-20. Singh, J. S. and W. H. Gupta (1977) Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical review 43: 449-529. Smith, V. R. (2005) Moisture, carbon and inorganic nutrient controls of soil respiration at sub-Antarctic island. Soil Biology and Biochemistry 37: 81-91. Söderström, B., E. Bååth and B. Lundgren (1983) Decrease in soil microbial activity and biomasses owing to nitrogen amendments. Candian Journal of Microbiology 29: 1500-1506. Stotzky, G. (1965) Microbial respiration. In: C. A. Black (ed.) Methods of soil analysis. Part 2. Agronomy 9: 1550-1572. Tate, R. L. (2000) Soil Microbiology. John Wiley and Sons, New York, pp. 508. Tewary, C. K., U. Pandey and J. S. Singh (1982) Soil litter respiration rate in different micro-habitats of mixed oak-conifer forest and their control by edaphic conditions and substrate quality. Plant and Soil 65: 233-238. Thirukkumaran, C. M. and D. Parkinson (2000) Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry 32: 59-66. Vose, J, M., K. J. Elliott, D. W. Johnson, D. T. Tingey and M. G. Johnson (1997) Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine. Plant and soil 190: 19-28. Wood, B. D., C. K. Keller and D. L. Johnstone (1993) In situ measurement of microbial activity and controls on microbial CO2 production in the unsaturated zone. Water Resources Research 29 (3): 647-659. Wright, A. L. and K. R. Reddy (2001) Heterotrophic microbial activity in northern everglades wetland soils. Soil Science Society of America Journal 65: 1856-1864. Xu, M. and Y. Qi (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology 7: 667-677.
採自惠蓀林場杉木人工林地之土樣,於室內經不同土壤溫度 (12、20及28℃)、不同土壤水勢 (-0.33、-7.5及-15 bar) 及不同養分添加下 (NH4NO3、K2HPO4及不添加養分),觀察土壤微生物呼吸速率變化情形。結果顯示,當土壤水勢為-7.5及-15 bar時,土壤溫度變化對土壤微生物呼吸有顯著的影響,土壤微生物呼吸速率隨著溫度的上升顯著地增加,分別由22.98增加至40.94 μg CO2 g soil-1 hr-1以及由25.91增加至37.89 μg CO2 g soil-1 hr-1;當土壤水勢為-0.33 bar時,三個溫度間之土壤微生物呼吸速率並無顯著差異,維持在31.90~35.93 μg CO2 g soil-1 hr-1之間。土壤微生物呼吸速率於不同土壤水勢條件下並無顯著差異,在不同溫度培育條件下,土壤微生物呼吸速率對土壤水勢所產生的反應亦有不一致的趨勢,當溫度為12℃時,以-0.33 bar土壤水勢下之土壤微生物呼吸速率較高;當溫度為20℃時,不同土壤水勢處理對土壤微生物呼吸速率並無影響;當溫度為28℃時,則以-7.5 bar土壤水勢下之土壤微生物呼吸速率較高。不論是何種土壤養分處理狀況下,土壤微生物呼吸速率皆隨著溫度上升而有增加的趨勢。土壤添加N養分後,不論於何種培育溫度條件下,皆具顯著增進土壤微生物呼吸速率之結果;在土壤中添加P養分,於12℃及20℃培育溫度條件下,對土壤微生物呼吸速率皆沒有影響,分別維持在21.88~24.69 μg CO2 g soil-1 hr-1及26.89~29.70 μg CO2 g soil-1 hr-1之間,當培育溫度為28℃狀態下,添加P養分處理之土壤顯著抑制了土壤微生物呼吸速率,由40.94降到30.07 μg CO2 g soil-1 hr-1。土壤微生物呼吸速率對於培育條件之改變所產生的反應有時不一致,推論應與土樣中微生物種類之變化有密不可分的關係,此部分仍有待進一步研究。

The soil used in this study was collected from China-fir plantation in Hui-Sun experiment forest. Soil samples were brought back to the laboratory and treated with different soil temperatures (12, 20 and 28℃), different soil water potentials (-0.33, -7.5 and -15 bar) and different soil nutrient additions (NH4NO3, K2HPO4 and controlled) to measure the variations of soil microbial respiration rate. The results showed that soil microbial respiration rate significantly increased with temperature when soil water potentials were -7.5 (from 22.98 to 40.94 CO2 g soil-1 hr-1) and -15 bar (from 25.91 to 37.89 CO2 g soil-1 hr-1). However, at soil water potential of -0.33 bar, soil microbial respiration rate ranged between 31.90 and 35.93 CO2 g soil-1 hr-1 which was not significantly different with temperatures. Soil microbial respiration rate was not significantly different with soil water potentials, and the variability of soil respiration rate incubated at different temperatures tended to be different with soil water potentials. When soil temperatures were at 12℃ and 28℃, those soils in -0.33 bar and -7.5 bar water potential had the higher soil microbial respiration rate, respectively, but it had no difference when temperature was at 20℃. Whatever the soil nutrient treatments were, soil microbial respiration rate tended to increase with temperatures. Nitrogen addition stimulated soil microbial respiration rate at three controlled temperatures. However, phosphorus addition had no effect on soil microbial respiration rate at 12℃ and 20℃ which were between 21.88~24.69 CO2 g soil-1 hr-1 and 26.89~29.70 CO2 g soil-1 hr-1, respectively. Otherwise, soil microbial respiration rate was reduced from 40.94 to 30.07 CO2 g soil-1 hr-1 at soil temperature of 28℃. It was suggested that soil microbial respiration has high relation to soil microbial species. Meanwhile, the effects of incubated conditions on soil microbial respiration rates were inconsistent. It was required more research in future.
Appears in Collections:森林學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.