Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65840
標題: 多元醇液化木質材料-環氧樹脂聚摻合樹脂之製備及其應用
Preparation of Polyhydric Alcohol Liquefied Woody Material-Epoxy Resin Polyblends and Its Applications
作者: 吳秋昌
Wu, Chiou-Chang
關鍵字: liquefied woody materials;液化木質材料;epoxy resins;polyblending resins;adhesive;環氧樹脂;聚摻合樹脂;膠合劑
出版社: 森林學系所
引用: 1. 尤昭云、李文昭 (2005) 聚乙二醇液化柳杉木及其在PU發泡體之應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp. 69-83。 2. 李文昭 (1998) 溶解相思樹樹皮製造木材膠合劑之研究。林產工業 17(4): 681-696。 3. 李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛樹脂木材膠合劑。林產工業20(3): 205-214。 4. 李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-杉木木材液化及液化木材膠合劑製備。林業研究季刊 24(1):11-20。 5. 李文昭、劉正字、侯家翔 (2003a) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25(3):73-86。 6. 李文昭、張嘉方 (2003b) 聚乙二醇液化之探討-杉木及相思樹。林產工業22(3):205-214。 7. 李文昭、劉正字、侯家翔 (2004a) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23(1):43-53。 8. 李文昭、張嘉方 (2004b) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 9. 李文昭、張嘉方 (2004c) 多元醇液化木材相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23:239-248。 10. 李文昭、劉正字 (2004) 不同樹種樹皮單寧之分子量大小及分布範圍。林業研究報告 26(3):33-48。 11. 李文昭、宋憶青、陳奕君、林孟萱 (2005) 竹材液化製造發泡體(1)。林產科技技術轉移暨管理計畫研討會論文集。行政院農委會林務局、中華林產事業協會。pp.66-83。 12. 林建樑 (1994) 反應工程。復文書局。台南。pp.21-31。 13. 林孟萱、李文昭 (2005) 多元醇液化杉木及相思樹木材在PU樹脂膠合劑之應用。中華林學會94年度學術論文發表會論文集。中華林學會出版。 pp.631-646。 14. 陳奕君、李文昭 (2004) 液化孟宗竹材製備酚樹脂。中華林學會93年度學術論文發表會論文集。中華林學會出版。pp.509-520。 15. 陳奕君、李文昭、劉正字 (2005) 液化孟宗竹材製備Resol型醇溶性酚樹脂及其應用。中華林學會94年度學術論文發表會論文集。中華林學會出版。 pp.727-739。 16. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.11-19;129。 17. 張上鎮、王升陽 (1997) 台灣產針、闊葉樹材實木散反射傅立葉紅外線光譜特性之比較。中華林學會季刊 30(3):329~341。 18. 張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1):11-18。 19. 張信貞 (1988) 膠體滲透層析儀(GPC)之原理應用。科儀新知 10(1):44-55。 20. 蔡信行 編著 (1978) 聚合物化學。文京圖書公司。台北。pp.137-153。 21. 劉正字、林正榮 (1987) 結構用集成材膠合劑之研究(第四報)-雙酚A系環氧樹脂膠合劑。農林學報 36(2):171-180。 22. 薛敬和 編譯 (1986) 黏著劑全書。高立圖書有限公司。pp.705-709;729-733。 23. 小林正彥 (2005) 木材の多価アコール系液化とその应用。木材工業 60(5):202-206。 24. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Preparation and characterization of the phenolated wood using hydrochloric acid(HCl)as a catalyst. Wood Sci. 30: 39-47. 25. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Some characterization of hydrochloric acid catalyzed phenolate wood-based mataerials. Mokuzai Gakkaishi 41(8): 741-748. 26. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996a) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak. Holzforschung 50: 85-90. 27. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996b) Phenolation of wood using oxalic acid as a catalyst : effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61: 675-683. 28. Cao, Y., Y. Shao, J. Sun and S. Lin (2003) Mechanical properties of an epoxy resin toughened by polyester. J. Appl. Polym. Sci. 90: 3384-3389. 29. Ge, J. J. and K. Sakai (1993) Compressive properties and biodegradabilities of polyurethane foams derive condensed tannin. Mokuzai Gakkaishi 39(7): 801-806. 30. Ge, J. J. and K. Sakai (1996) Synthesis of biodegradable of polyurethane foams from the bark Acacia mearnsii. Mokuzai Gakkaishi 42(1): 87-94. 31. Ge, J., W. Zhong, Z. Guo, W. Li and K. Sakai (1999) Biodegradable polyurethane materials from bark and starch. I. Highly resilient foams. J. Appl. Polym. Sci. 77: 2575-2580. 32. Ge, J., X. Shi, M. Cai, R. Wu and M. Wang (2003) A novel biodegradable antimicrobial PU foam from wattle tannin. J. Appl. Polym. Sci. 90:2756-2763. 33. Jain, P., V. Choudhary and I. K. Varma (2002) Effect of structure on thermal behaviour of epoxy resins. European Polym. J. 39:181–187. 34. Kobayashi, M., K. Tukamoto and B. Tomita (2000) Application of liquefied wood to a new resin system-synthesis and properties of liquefied wood/epoxy resins. Holzforschung 54(1): 93-97. 35. Kobayashi, M., Y. Hatano and B. Tomita (2001) Viscoelastic properties of liquefied wood/epoxy resin and its bond strength. Holzforschung 55(6):667-671. 36. Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 50: 407-414. 37. Kurimoto, Y., M. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53(6): 617-622. 38. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura(2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74: 151-157. 39. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane film prepared from the liquefied wood. Biomass and Bioenergy 21: 381-390. 40. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40. 41. Lambuth, A. L. (1988) Adhesives from renewable resources historical perspective and wood industry needs. Pp. 1-10 In R. W. Hemingway, A. H. Connner and S. J. Branham, eds. Adhesives from renewable resources American Chemical Society. Washington, DC. 42. Lee, S.H., M. Yoshioka and N. Shiraishi (2000) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 78: 319-325. 43. Li, Y. and S. Mao (1996a) Study on the properties and application of epoxy resin/polyurethane semi-interpenetrating polymer networks. J. of Appl. Polym. Sci. 61: 2059-2063. 44. Li, Y. and S. Mao (1996b) A study on the glass transition behavior and morphology of semi-interpenetrating polymer networks J. of Polym. Sci. Part A Polym. Chem. 34: 2371-2375. 45. Li, M. S., C. C. M. Ma, M. L. Lin and F. C. Chang (1997)Chemical reaction occurring during the preparation of polycarbonate-epoxy blends. Polym. 38(19): 4903-4913. 46. Manson, J. A. and L. H. Sperling(1976) Polymer blends and composites Ch.2 plenum press. New York. pp. 50-65. 47. Nonaka, Y., B. Tomita and Y. Hatano (1997) Synthesis of lignin/epoxy resins in aqueous systems and their properties. Holzforschung 51(2): 183-187. 48. Park, S. J. and J. S. Jin (2001) Energetic studies on epoxy polyurethane interpenetrating polymer networks. J. Appl. Polym. Sci. 82: 775-780. 49. Rigail-Ceden˜o, A. and C.S.P. Sung (2005) Fluorescence and IR characterization of epoxy cured with aliphatic amines. Polym. 46:9378–9384. 50. Sun, J. X., R. C. Sun, X. F. Sun and Y.Q. Su (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohyd. Res. 339: 291-300. 51. Williams, V. M., L. J. Porter and R. W. Hemingway(1983) Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22(2):569-572. 52. Xie, T. and F. Chen (2005) Fast liquefaction of bagasse in ethylene carbonate and preparation of epoxy resin from the liquefied product. J. Appl. Polym. Sci. 98: 1961-1968. 53. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70: 61-67. 54. Yao, Y., M. Yoshioka and N. Shiraishi (1995) Rigid polyurethane foams from combined liquefied mixtures wood and starch. Mokuzai Gakkaishi 41(7): 659-668. 55. Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foam from liquefied starch. J. Appl. Polym. Sci. 60 : 1939-1949. 56. Yazaki, Y., P. J. Collins, M. J. Reilly, S. D. Terrill and T. Nikpuor (1994)Fast-curing phenol-formaldehyde resins. Part 1. Molecular weight distribution of PF resins. Holzforschung 48(1): 41-48.
摘要: 
本研究主要以柳杉(Cryptomeria japonica; Japanese fir)及麻竹(Dendrocalamus latiflorus Munro; Ma bamboo)為木質材料,利用聚乙二醇(Polyethylene glycol; PEG)與丙三醇(Glycerol)為混合溶劑,硫酸為催化劑進行液化處理,另以莫耳比之為5/1之環氧氯丙烷(Epichlorohydrin)與雙酚A(Bisphenol A)合成製備雙酚A型環氧樹脂(Diglycidyl ether of bisphenol A; DGEBA),並進一步將所得之產物以摻合方式製備聚摻合樹脂(Polyblending resins),並以三乙基四胺(Triethylene tetramine; TETA)或異氰酸酯(Isocyanate; Desmodur L)為架橋硬化劑,探討液化木質材料及硬化劑添加量對聚摻合樹脂之反應性影響,並進一步探討聚摻合樹脂應用於木材膠合之可行性。結果顯示以PEG400液化柳杉具有最佳之液化效果,而液化木質材料之分子量分布特性可區分為低分子量區及高分子量區,由FT-IR光譜分析圖顯示,木質材料經液化處理後,與液化溶劑以醚化反應形成衍生物。以TETA為硬化劑之環氧樹脂及聚摻合樹脂具備常溫硬化性,其膠化過程為一放熱現象,其中聚摻合樹脂之硬化放熱量隨液化木質材料添加量增加而減小,且膠化時間增長;三種液化木質材料中以PEG400液化柳杉之反應性較佳,而增加硬化劑添加量則有助膠化時間縮短,以DSC熱分析得知等溫硬化後之樹脂再加熱有助於其進一步架橋硬化。由聚摻合樹脂之TGA熱重分析顯示將液化木質材料導入環氧樹脂有助於提升硬化樹脂之耐熱性。將環氧樹脂及聚摻合樹脂做為木材膠合劑之應用,顯示環氧樹脂具優良之膠合性能,硬化劑TETA添加量以10 phr者有較佳之膠合效果,以90℃加熱3 h之熱硬化,可提高聚摻合樹脂之膠合性能,顯示加熱有助於進一步架橋硬化並改善耐水性質,液化木質材料添加量至60 part者之膠合性能仍優於環氧樹脂。
URI: http://hdl.handle.net/11455/65840
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.