Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65861
標題: 台灣櫸人工林生物量及碳儲存量之研究
Study on the biomass and carbon storage in the Zelkova serrata plantation
作者: 柯淑惠
Shu-Hui, Ko
關鍵字: Zelkova serrata;台灣櫸;biomass;carbon storage;soil organic carbon;生物量;碳儲存量;土壤有機碳
出版社: 森林學系所
引用: 王巧萍(2006)森林土壤碳庫與大氣二氧化碳之互動。林業研究專訊13(1): 10-13。 呂鴻光、簡慧貞、盧裕倉(2003)從京都議定書看植樹造林。氣候變遷對森林之二氧化碳吸存影響研討會論文集。1-16頁。 林世宗、鍾智昕(2005)台灣二葉松地上部林木碳吸存之估算。森林經營對二氧化碳吸存之貢獻研討會論文集。49-63頁。 林國銓(1980)山黃麻生物量及養分含量之研究。中華林學季刊13(2): 77-85。 林國銓(2003)森林施業對森林生態系碳累積量之影響。氣候變遷對森林之二氧化碳吸存影響研討會論文集。111-124頁。 林國銓、何淑玲(2005)由生物量推估台灣不同林分之碳儲存量。森林經營對二氧化碳吸存之貢獻研討會論文集。97-108頁。 林國銓、洪富文、游漢明、馬復京(1994)福山試驗林闊葉林生態系生物量與葉面積指數的累積與分佈。林業試驗所研究報告季刊9(4): 299-315。 林裕仁、劉瓊霦、林俊成(2002)台灣地區主要用材比重與碳含量測定。台灣林業科學17(3): 291-299。 邱志明、唐盛林(2004)台灣櫸修之傷口解析及無節材生產之預估。林業研究專訊11(3): 5-8。 洪富文、夏禹九、唐凱軍(1986)蓮華池次生暖溫帶山地雨林地上部生物量及葉面積之估算。林業試驗所試驗報告第465號。 張朝婷、邱祈榮、王巧萍(2005)台灣不同氣候區天然林枝葉層與表土層碳儲存量。森林經營對二氧化碳吸存之貢獻研討會論文集。109-120頁。 郭幸榮、徐新武、張照群、游啟皓、游智偉、張恆顥、鍾年鈞、翁世豪(2005)柳杉人工林生物量及碳貯存量之估算-以觀霧地區為例。森林經營對二氧化碳吸存之貢獻研討會論文集。23-35頁。 郭魁士(1980)土壤實驗。中國書局。246頁。 陳財輝、呂錦明(1988)苗栗海岸砂丘木麻黃人工林生長及林分生物量。林業試驗所研究季刊報告3(1):333-343。 游麗玉(1995)惠蓀實驗林場桂竹林生物量與養分聚積。國立中興大學碩士論文。87頁。 劉棠瑞、蘇鴻傑(1983)森林植物生態學。臺灣商務印書館。462頁。 劉業經、呂福原、歐辰雄(1994)台灣樹木誌。國立中興大學農學院出版委員會。925頁。 薛銘童(2003)關刀溪次生闊葉林地上部生物量與養分聚積之研究。國立中興大學碩士論文。58頁。 薛銘童、許博行(2003)關刀溪次生闊葉林地上部生物量與葉面積指數之研究。林業研究季刊25(2): 11-24。 薛銘童、劉瓊霦、許博行(2005)關刀溪次生林不同樹種地上部碳的累積和分配。森林經營對二氧化碳吸存之貢獻研討會論文集。72-82頁。 顏江河(2005)森林土壤的碳吸存量。森林與環境變遷研討會論文集。58-70頁。 顏添明、黄凱洛(2006)杉木地上部碳儲存量之推估。台灣林業科學21(2):273-280。 關秉宗(2003)簡介澳洲林木與林分生物量取樣與估算準則。氣候變遷對森林之二氧化碳吸存影響研討會論文集。83-93頁。 Arrouays, D. and P. Pelissier (1994) Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Sci. 157:185-192. Bohn, H. L. (1982) Estimate of organic carbon in world soils. Soil Sci. Soc. Am. J. 46: 1118-1119. Brown, S., A. E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Can. J. For. Res. 16: 390-394. Buringh, P. (1984) Organic carbon in soils of the world. pp.91-109. In: Woodwell, G. M. (ed.) The Role of Terrestrial Vegetation in the Global Carbon cycle. Measurements by remote sensing, SCOPE 23. John Wiley & Sons, New York. Chen, Z. S. and Z. Y. Hseu (1997) Total organic carbon pool in soils of Taiwan. Proc. Nat. Sci. Coun. Rep. China Part B Life Sci. 21(3): 120-127. DeAngelis, D. L., R. H. Gardner and H. H. Shugart (1981) Productivity of forest ecosystems studied during the IBP: the woodlands data set. pp.567-672. In: D. E. Reichle (ed.), Dynamic Properites of Forest Ecosystems. Cambridge University Press, Cambridge. Eliasa, M. and C. Potvin (2003) Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can. J. For. Res. 33: 1039-1045. Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194. Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooner, O. E. Sala and E. D. Schulze (1996) A global analysis of root distributions for terrestrial biomes. JIFPRO (Japan International Forestry Promotion & Cooperation Center) (2002) Annual Report 2001. Technical report for CDM Plantation. 85 p. JOPP (Japan Overseas Plantation Center for Pulpwood) (2000) Annual Report 1999. Carbon sink in industrial plantations. 171 p. Kimble, J. M., H. Eswaran and T. Cook (1990) Organic carbon on a volume basis in tropical and temperate soils. Transactions of the 14th International Congress of Soil Science 5: 248-253. Kraenzel, M., A. Castillo, T. Moore and C. Potvin (2003) Carbon storage of harvest-age teak(Tectona grandis)plantation, Panama. For. Ecol. Man. 137: 213-225. Lasco, R. D. (2002) Carbon budgets of tropical forest ecosystems in southeast Asia. pp.3-14. In: K. C. Lin and J. C. Lin (eds.), Proceedings International Symposium on Forest Carbon Sequestration and Monitoring, TFRI Extension Series No.153, Nov., 11-15. Taiwan Forestry Research Institute and Winrock International, Taipei, Taiwan. Lasco, R. D. and P. D. Susan (1999) A Lercaena Leucocephala-based indigenous fallow system in central Philippines: the Naalad system. Int. Tree Crops J. 10(2):161-174. Lin, K. C., C. P. Wang, C. M. Huang, F. W. Horng and C. M. Chiu (2003) Estimates of biomass and carbon storage in two Taiwnaia plantations of the Liukuei Experimental Forest. Taiwan J. For. Sci. 18 (2): 85-94. Lin, K. C., C. T. Duh, C. M. Huang and C. P. Wang (2006) Estimates of coarse root biomass and nutrient contents of trees in a subtropical broadleaf forest in Taiwan. Taiwan J. For. Sci. 21 (2):155-166. Long, J. N. and J. Turner (1975) Aboveground biomass of understorey and overstorey in an age sequence of four Douglas-fir stands. J. Ap. Ecol. 12: 179-188. Montagnini, F. and C. Porras (1998) Evaluating the role of plantations as carbon sinks:An example of an integrative approach from the humid tropics. Env. Man. 22(3): 459-470. Morikawa,Y., H. Inoue, M. Yamada, D. Hadriyanto, R. Diana and M. Fatawi, JIFRO and JOPP (2002) Carbon accumulation of man-made forest in Monson Asia in relation to CDM. pp.43-51. In: Proceedings of Tokyo Workshop, Oct.,7-11, 2001. BIO-REFOR-Sustainable Forest Management System and Biodiversity. BIO-REFOR and IUFRO-SPDC. Ponette, Q., J. Ranger, J. M. Ottorini and E. Ulrich (2001) Aboveground biomass and nutrient content of five Douglas-fir stands in France. For. Ecol. Man. 142: 109-127. Sanford, R. L. and E. Cuevas (1996) Root growth and rhizosphere interactions in tropical forest. pp.268-300. In: Mulkey, S., R. L. Chazdon, and A. P. Smith (eds), Tropical Forest Plant Ecophysiology. Champman & Hall, New York. Sakurai, S., S. B. Ragil and L. U. De la Cruz (1994) Tree growth and productivity in degraded forest land. pp.64-71. In: Rehabilitation of Degraded Land in the Tropics. JIRCAS International Symposium Series No. 1, Japan Internation Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan. Snowdown, P., J. Raison, H. Keith, P. Ritson, P. Grierson, M. Adams, K. Montagu, H. Bi, W. Burrows and D. Eamus (2002) Protocol for sampling tree and stand biomass. National Carbon Accounting System Technical Report No. 31, Australian Greenhouse Office, Canberra, AU. 66 p. Thomas, S. C.(1996)Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rainforest trees. Am. J. Bot. 83(5): 556-566. Tsai, C. C. and Z. S. Chen (2002) The estimation of total soil carbon stock in Taiwan forest soils. pp.53-62. In: K. C. Lin and J. C. Lin (eds.), Proceedings International Symposium on Forest Carbon Sequestration and Monitoring, TFRI Extension Series No.153, Nov., 11-15. Taiwan Forestry Research Institute and Winrock International, Taipei, Taiwan. Waring, R. H. and W. H. Schlesinger (1985) Forest ecosystems: concepts and management. Academic Press, London, England. Yamada, M., K. Hanamizu, T. Kawazoe, T. Tange and Y. Morikawa (1999) Carbon stock in fast growing tree species (1) Eucalyptus globules man made forest in Manjimup, western Australia. Trop. For. 46: 23-30. Yamada, M., K. Tsurumi, N. Haraguchi, T. Kawazoe, T. Yamanoshita, T. Tange and Y. Morikawa (2000a) Carbon stock in fast growing tree species (2) Acacia mangium, A. auriculiformis, and Eucalyptus camaldulensis man made forest in Sonbe, Viet Nam. Trop. For. 47: 33-39. Yamada, M., M. Matsuda, T. Tange and Y. Morikawa (2000b) Carbon stock in fast growing tree species (3) Eucalyptus randis man made forest in Melmoth, South Africa. Trop. For. 48: 18-24. Yamada, M., K. Hanamizu, T. Daido, T. Tange, and Y. Morikawa (2000c) Carbon stock in fast growing tree species (4) Acacia mangium man made forest in Madang, Papua New Guinea. Trop. For. 46: 23-30.
摘要: 
本研究選擇台大實驗林內茅埔營林區台灣櫸9年生人工林林分,估算全林分生物量和碳儲存量。伐採林分中不同徑級之台灣櫸樣木共12株並挖掘其中7株樣木根部,建立各部位之異率迴歸式,估算結果,全林分台灣櫸林木生物量為33.32 ton/ha,其中林木主幹及大枝條所佔生物量最高,且比例相近。林木不同部位碳濃度呈顯著差異,各部位碳濃度高低為:主幹>小枝條>大枝條>根>葉>樹皮,換算成林木碳含量轉換係數為0.4682。地被植物及枯枝落葉層則分別於不同季節取樣,四季內的地被生物量與枯枝落葉層調查結果均不呈顯著差異,但是平均來看枯枝落葉層在夏季的生物量為一年四季中之最低值,而後則逐季增加,此現象應與台灣櫸的落葉習性有關。估算結果,本林分中地被植物及枯枝落葉層生物量,分別為1.75 ton/ha、3.74 ton/ha。全林分碳儲存量為267.90 ton/ha,台灣櫸造林木佔全林分碳儲存量之5.8%,地被植物及枯枝落葉層,在全林分碳儲存量所佔比率僅分別為0.3%、0.5%。土壤佔全林分碳儲存量比例最高,為93.4%。不同深度之土壤有機碳濃度,以深度0-15 cm範圍為最高,且隨著深度增加,土壤有機碳濃度呈現遞減的趨勢。2005至2006年台灣櫸林木生長所增加之年生物量為7.31 ton/ha,換算所增加之年碳儲存量為4.11 ton/ha。

We measured and estimated the biomass and carbon storage of a nine-year-old Zelkova serrata plantation in the Neimaopu Tract of the Experimental Forest of National Taiwan University. Twelve sample trees covering the whole range of diameter size were felled, and 7 of their roots were excavated to measure and analyze the biomass and carbon concentration of each tissue. Afterward allometric equations in different tissues of Z. serrata trees were calculated for estimation of biomass. The tree biomass of Z. serrata plantation is 33.32 ton/ha, of which the stem and branch tissues comprise the highest proportions and are quite close to each other. The carbon concentrations are significantly different among different tissues, and the ranking of their mean values follows: stem> twig> branch> root> leaf> bark. The carbon conversion coefficient of Z. serrata is 0.4682. The ground vegetation and litter layer were collected in four seasons, and there was no significant difference in biomass among seasons. However, the mean biomass of litter layer was least in summer and then increased season by season, which may be attributable to the deciduousness of Z. serrata. The estimated biomass of ground vegetation and litter layer in the Z. serrata plantation is 1.75 ton/ha and 3.74 ton/ha respectively. The carbon storage of the entire stand approaches 267.90 ton/ha, of which trees, ground vegetation, litter layer, and soil account for 5.8%, 0.3%, 0.5%, and 93.4% respectively. The soil by far holds the most of carbon sink in this plantation. The soil organic carbon concentration is the highest in the 0-15 cm layer and then decreases with depth. From 2005 to 2006, the annual growth of tree biomass is 7.31 ton/ha, which contribute an increment of 4.11 ton/ha carbon storage to the plantation.
URI: http://hdl.handle.net/11455/65861
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.