Please use this identifier to cite or link to this item:
標題: 疏伐對惠蓀林場杉木人工林土壤呼吸之影響
Effects of Thinning on Soil Respiration at China-fir Plantation in Hui-Sun Experiment Forest
作者: 游偉青
Yu, Wei-Ching
關鍵字: China-fir;杉木;soil respiration;Continue-Open-Flow-Chamber method;thinning;litter fall;土壤呼吸;開放式連續抽氣法;疏伐;枯枝落葉
出版社: 森林學系所
引用: 田大倫 (2005) 杉木林生態系統功能過程。科學出版社。 呂鴻光、簡慧貞、盧裕倉 (2003) 從京都議定書看植樹造林。氣候變遷對森林之二氧化碳吸存影響研討會論文集 pp. 1-16。 李宏明 (2001) 台灣森林土壤二氧化碳之釋放通量及其影響因子。國立台灣大學農業化學研究所碩士論文。 肖復明、汪思龍、杜天真、于小軍、陳龍池 (2005) 杉木人工林林地土壤呼吸研究。江西農業大學學報 27(4):580-584。 林信良 (1994) 土壤微生物生質量和呼吸量測定方法之探討與應用。國立中興大學土壤學研究所碩士論文。 周存宇、周國逸、王迎紅、張德強、劉世忠、王躍思、孫揚 (2005) 鼎湖山針闊葉混交林土壤呼吸的研究。北京林業大學學報 27(4):24-27。 洪富文 (1988) 台灣中部地區不同年齡杉木人工林內土壤有效氮及硝化作用之潛能。中華林學季刊 21(4):39-48。 莊舜堯、陳岳民、王明光、郭幸榮、黃正良、金恆鑣 (2005) 森林疏伐對土壤氮素礦化及硝化作用之影響。台灣林業科學 20(2):167-177。 陳全勝、李凌浩、韓興國、簡志丹 (2003) 水分對土壤呼吸的影響及機理。生態學報 23(1):972-978。 湯曜滋 (1999) 台灣中低海拔主要闊葉樹種之光合成與用水效率之研究。國立中興大學水土保持研究所碩士論文。 楊玉盛、陳光水、董彬、王小國、謝錦升、李靈、盧豪良 (2004) 格氏栲天然林和人工林土壤呼吸對乾濕交替的影響。生態學報 24(5):953-958。 劉紹輝、方精雲 (1997) 土壤呼吸的影響因素及全球尺度下溫度的影響。生態學報 17(5):469-476。 劉紹輝、方精雲、清田 信 (1998) 北京山地溫帶森林的土壤呼吸。植物生態學報 22(2):119-126。 劉穎、韓士杰、胡艷玲、戴冠華 (2005) 土壤溫度和溼度對長白松林土壤呼吸速率的影響。應用生態學報 16(9):1581-1585。 Andson, J. P. E. (1982) Soil respiration. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. P.831-871. Baeumler, R. and W. Zech (1998) Soil solution chemistry and impact of forest thinning in mountain forests in the Bavarian Alps. Forest Ecology and Management 108:231-238. Bååth, E. and T. H. Anderson (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35: 955-963. Behara, N., S. K. Joshi and D. P. Pati (1990) Root contribution to total soil metabolism in a tropical forest soil from Orissa, India. Forest Ecology and Management 36: 125-134. Borken, W., Y.-J. Xu, R. Brumme and N. Lamersdorf (1999) A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects. Soil Science Society of America Journal 63: 1848-1855. Bouma, J., L. N. Kai, M. E. David and P. L. Jonathan (1997) Estimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water content. Plant and Soil 195: 221-232. Bowden, R. D., K. M. Nwkirk and G. M. Rullo (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biology and Biochemistry 30: 1591-1957. Brumme, R. (1995) Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant and Soil. 168: 593-600. Bunt, J. S. and A. D. Rovira (1954) Oxygen uptake and carbon dioxide evolution of heat-sterilized soil. Nature 173: 1242. Burton, A. J. and K. S. Pregitzer (2003) Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology 23: 273-280. Casals, P., J. Romanyà, J. Cortina, P. Bottner, M. M. Coûteaux and V. R. Vallejo (2000) CO2 efflux from a Mediterranean semi-arid forest soil. Part Ⅰ. seasonality and effects of stoniness. Biogeochemistry 48(3): 261-281. Cisneros-Dozal, L. M., S. Turmbore and P. Hanson (2006) Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Global Change Biology 12: 194-204. Davidson, E. A., E. Belk and R. D. Boone (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217-227. Davidson, E. A., L. V. Verchot, J. H. Cattanio, I. L. Aakerman and J. E. M. Carvalho (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biochemistry 48: 53-69. Davidson, E. A., K. Savage, P. Bolstad, D. A. Clark, P. S. Curtis, D. S. Ellsworth, P. J. Hanson, B. E. Law, Y. Luo, K. S. Pregitzer, J. C. Randolph and D. Zak (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113: 39-51. Edward, N. T. (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Proceedings - Soil Science Society of America Journal 39: 361-365. Kirschbaum, M. U. F. (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27: 753-760. Kowalenko, C. G., K. C. Ivarson and D. R. Cameron (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biology and Biochemistry 10: 417-423. Laverman, A. M., H. R. Zoomer, H. W. Verseveld and H. A. Verhoef (2000) Temporal and spatial variation of nitrogen transformation in a coniferous forest soil. Soil Biology and Biochemistry 32:1661-1670. Lenis, R., S. Mazurier, F. Gourbiere and A. Josserand (1986) Rapid determination of the nitrifcation potential of an acid forest soil and assessment of its variability. Soil Biology and Biochemistry 18:239-240. Lundergardh, M. (1927) Carbon dioxide evolution of soil and crop growth. Soil Science 23: 417-453. Macfadyen, A. (1970) Methods of Study in Soil Ecology. In J. Phillipson ed. IBP/UNESCO Symp., Paris. pp.167-172. Martikainen, P. J., H. Nykänen, J. Alm and J. Silvola (1995) Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant and Soil 168-169: 571-577. Matson, P. A. and R. D. Boone (1984) Natural disturbance and nitrogen mineralization: wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology 65:1511-1516. Nakane, K., M. Yamamoto and H. Tsubota (1983) Estimation of root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology 33: 397-408. Ohashi, M., K. Gyokusen and A. Satio (1999) Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an Open-Flow Chamber method. Forest Ecology and Management 123: 105-114. Orchard, V. A. and F. J. Cook (1983) Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry 15: 447-453. Peng, S. L. and B. S. Wang (1995) Forest succession at Dinghushan, Guangdong, China. Chinese Journal of Botany 7: 75-80. Raich, J. W. and K. J. Nadelhoffer (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70(5): 1346-1354. Raich, J. W. and W. H. Schlesinger (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81-99. Ramsey, P. W., M. C. Rillig, K. P. Feris, J. N. Moore and J. E. Gannon (2005) Mine waste contamination limits soil respiration rates: a case study using quantile regression. Soil Biology and Biochemistry 37: 1177-1183. Rastogi, M., S. Singh and H. Pathak (2002) Emission of carbon dioxide from soil. Current Science 82(5): 510-517. Robertson, F. A., P. J. K. Myers and P. G. Saffigna (1995) Respiration from soil and litter in a sown perennial grass pasture. Australian Journal of Soil Research 33(1): 167-178. Robertson, G.. P. and J. M. Tiedje (1987) Nitrous oxide sources in aerobic soils: Nitrification, denitrification, and other biological processes. Soil Biology and Biochemistry 19: 187-193. Savage, K. E. and E. A. Davidson (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles 15: 337-350. Selig, M. F. and J. R. Seiler (2004) Soil CO2 efflux trends following the thinning of a 22-year-old loblolly pine plantation on the Piedmont of Virginia. Gen. Tech. Rep. SRS–71. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. pp.469-472. Tang, J., Y. Qi, M. Xu, L. Misson and A. H. Goldstein (2005) Forest thinning and respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiology 25: 57-66. Vanhala, P. (2002) Seasonal variation in the soil respiration rate in coniferous forest soils. Soil Biology and Biochemistry 34: 1375-1379. Wiant, H. V. (1967) Has the contribution of litter decay to forest "soil respiration" been overestimated? Journal of Forestry 65: 408-409. Widen, B. and H. Majdi (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research 31: 786-795. WildDung, F. L., T. R. Garland and R. L. Buschom (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biology and Biochemistry 7: 373-378. Xu, M. and Y. Qi (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology 7: 667-677. Yan, J., Y. Wang, G. Zhou and D. Zhang (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology 12: 1-12. Yeh, H. W., and W. Y. Kao (1996) 13CPDB variation in contemporary bryophytes and the constraint on its use as a proxy of paleoatmospheric CO2 contents. Journal of the Geological Society of China 39(3): 325-336. Yim, M. H., S. J. Joo, K. Nakane (2002) Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecology and Management 170: 189-197. Zibilske, L. M. (1994) Carbon Mineralization. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 38: 835-863.
本試驗於惠蓀林場杉木人工林,選擇疏伐林及未疏伐林以開放式連續抽氣法進行土壤呼吸試驗,探討疏伐作業對於土壤呼吸的影響,其中兩林分又分為保留枯枝落葉及去除枯枝落葉兩種處理。自2004年11月至2006年2月試驗結果顯示,惠蓀林場杉木人工林土壤呼吸量因季節不同而異,疏伐林土壤呼吸量範圍從9.23 – 251.84 CO2 kg ha-1 day-1 (保留枯枝落葉) 及5.82 – 161.27 CO2 kg ha-1 day-1 (去除枯枝落葉);未疏伐林土壤呼吸量範圍為17.50 – 151.31 CO2 kg ha-1 day-1 (保留枯枝落葉) 及5.04 – 82.81 CO2 kg ha-1 day-1 (去除枯枝落葉)。疏伐之後林分溫度高於未疏伐林,尤以夏季更為明顯,其土壤呼吸量亦顯著大於未疏伐林;不論是疏伐林或未疏伐林,保留枯枝落葉處理者土壤呼吸量皆大於去除枯枝落葉處理者,亦以夏季最為明顯。疏伐林與未疏伐林土壤呼吸與土壤溫度顯著正相關,大於與大氣溫度的相關性。土壤呼吸在季節變化上皆與溫度有相同趨勢,夏季時土壤呼吸量大於冬季,但土壤呼吸於日變化上不顯著;因夏季為雨季,土壤呼吸與土壤含水量亦為正相關,但相關性小於與溫度的相關性,表示土壤呼吸受到溫度的影響較大。土壤無機態氮與土壤呼吸相關性不顯著,因此解釋土壤呼吸變異之能力低。試驗結果初步得到疏伐作業導致土壤呼吸增加,但疏伐去除生長劣質林木後留下之優質林木,生長迅速良好有利於林木固定碳,疏伐作業對於碳吸存究竟是正面或負面的影響仍有待進一步研究。

This study used Continue-Open-Flow-Chamber method to investigate the effects of thinning on soil respiration at China-fir plantation in Hui-Sun experiment forest. In thinned and un-thinned stands, litter layer was kept intact or removed. The soil respiration were measured from Nov. 2004 to Feb. 2006. The soil respirations of thinned stands were 9.23 - 251.84 CO2 kg ha-1 day-1 (with litter fall) and 5.82 - 161.27 CO2 kg ha-1 day-1 (without litter fall). The soil respirations of un-thinned stands were 17.50 - 151.31 CO2 kg ha-1 day-1 (with litter fall) and 5.04 - 82.81 CO2 kg ha-1 day-1 (without litter fall). The temperatures in thinned stands were higher than un-thinned stands and its seasonal patterns were similar to those of soil respirations. The diurnal change of soil respirations in this study were negligible. Soil respiration were in higher correlation with soil temperature than with air temperature. The CO2 emission from soils with litter fall were higher than those of without litter fall. Caused by heavy rain and high moisture in summer, the soil respiration were positive correlation with temperature and moisture. Meanwhile the correlations between soil respirations and temperature were higher than correlation with moisture. It means that temperature was the major factor influenced on soil respirations in this study. The results showed that thinning led to increasing of soil respirations; however the reserve trees could grow faster and sequestrate more carbon. Thus the effects of thinning on carbon storage in forest are still researching subject in future.
Appears in Collections:森林學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.