Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65892
標題: 多元醇液化柳杉應用於聚胺基甲酸酯樹脂發泡體及彈性體製造之研究
Study on Manufacturing of PU Foams and Elastomers from the Polyhydric Alcohol Liquefied Cryptomeria Japonica
作者: 阮幼梅
Juan, Yu-Mei
關鍵字: Cryptomeria japonica;柳杉;Elastomer;Liquefaction;Polyhydric alcohol;Polyurethane foam;彈性體;液化處理;多元醇;聚胺基甲酸酯發泡體
出版社: 森林學系所
引用: 1.丁昭義、王松永 (1984) 林產學(上冊)。台灣商務印書館。台北。p.453。 2.尤昭云、李文昭 (2006) 多元醇液化柳杉材及其在PU發泡體之應用。林產工業25(2):143-158。 3.李文昭 (1998) 溶解相思樹樹皮製造木材膠合劑之研究。林產工業17(4):681-696。 4.李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。 5.李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-- 杉木木材液化及液化木材膠合劑製備。林業研究季刊24(1):11-20。 6.李文昭、劉正字、侯家翔 (2003a) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊25(3):73-86。 7.李文昭、張嘉方 (2003b) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。 8.李文昭、劉正字、侯家翔 (2004a) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業23(1):43-53。 9.李文昭、張嘉方 (2004b) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊37(1):111-119。 10.李文昭、張嘉方 (2004c) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業23(3):239-248。 11.李文昭、宋憶青、陳奕君、林孟萱 (2005) 竹材液化製造發泡體(1)。林產科技技術轉移暨管理計劃研討會論文 行政院農委會林務局、中華林產事業協會 pp.66-83。 12.林孟萱、李文昭 (2005) 多元醇液化杉木及相思樹木材在PU樹脂膠合劑之應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.631-646。 13.吳秋昌、李文昭 (2006) 多元醇液化木質材料-環氧樹脂聚摻合樹脂之製備及其應用。中華林學會95年度學術論文發表會論文集 中華林學會出版 pp.393-402。 14.周佳儒、李文昭 (2006) 多元醇液化竹材應用於PU膠合劑及低密度板材製造。中華林學會95年度學術論文發表會論文集 中華林學會印行 pp.1107-1116。 15.陳奕君、李文昭、劉正字 (2005) 液化孟宗竹材製備Resol型醇溶性酚樹脂及其應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.727-739。 16.陳奕君、李文昭 、劉正字 (2006) 酚液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業25(3):249-258。 17.張上鎮、吳季玲、王升陽、張惠婷 (1997a) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業16(4):825-838。 18.張上鎮、張惠婷 (1997b) Si-Carb取樣技術於木材散反射傅立葉轉換紅外線光譜分析之應用。中華林學季刊30(4): 369-376。 19.張國峻、李文昭、陳奕君 (2005) 柳杉木材之酚液化處理及其在PF樹脂製備之應用。中華林學會94年度學術論文發表會論文集 中華林學會出版 pp.55-68。 20.蔡信行 編著 (2002) 聚合物化學。新文京開發出版有限公司。台北。pp.59、pp.626-636。 21.康甄玲、李文昭、陳奕君、宋憶青 (2006) 柳杉心材與邊材之酚液化處理效果及其在Resol型酚樹脂製備之應用。中華林學會95年度學術論文發表會論文集 中華林學會出版 pp.1117-1126。 22.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Preparation and characterization of the phenolated wood using hydrochloric(HCl) as a catalyst. Wood Sci. 30:39-47. 23.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Some characterization of hydrochloric acid catalyzed phenolated wood –based materials. Mokuzai Gakkaishi 41(8):741-748. 24.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996a) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak resin. Holzforschung 50(1):85-90. 25.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996b) Phenolation of wood using oxalic acid as a catalyst: effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61: 675-683. 26.Aneja, A., G. L. Wilkes and E. G. Rightor (2002) Study of slabstock flexible polyurethane foams based on varied toluene diisocyanate isomer ratios. J. Polym. Sci. Pol. Phys. 41: 258-268. 27.Bailey, F. E. (1991) Flexible polyurethane foams. In ”Handbook of polymeric foams and technology”, Ed. Klempner, D. and K. C. Frisch, Hanser. New York. pp. 47-49, 62-63. 28.Christenson, E. M., J. M. Anderson, A. Hiltner and E. Baer (2005) Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer 46: 11744-11754. 29.Dounis, D. V. and G. L. Wilkes (1997a) Structure-property relationships of flexible polyurethane foams. Polymer 38(11): 2819-2828. 30.Dounis, D. V. and G. L. Wilkes (1997b) Effect of toluene diisocyanate index on morphology and physical properties of flexible slabstock polyurethane foams. J. Appl. Polym. Sci. 66: 2395-2408. 31.Edwards, P. A., G. Striemer and D. C. Webster (2006) Synthesis, characterization and self-crosslinking of glycidyl carbamate functional resins. Prog. Org. Coat. 57: 128-139. 32.Ge, J. J. and K. Sakai (1993) Compressive properties and biodegradabilities of polyurethane foams derive condensed tannin. Mokuzai Gakkaishi 39(7): 801-806 33.Ge, J. J. and K. Sakai (1996) Synthesis of biodegradable polyurethane foams from the bark Acacia mearnsii. Mokuzai Gakkaishi 42(1): 87-94. 34.Ge, J. J., X. Shi, M. Cai, R. Wu and M. Wang (2003) A novel biodegradable antimicrobial PU foam from wattle tannin. J. Appl. Polym. Sci. 90: 2756-2763. 35.Haseth, J. A., J. E. Andrewa, J. V. McClusky, R. D. Priester, JR., M. A. Harthcock, and B. L. Davis (1993) Characterization of polyurethane foams by mid-infrared fiber/FT-IR spectrometry. Appl. Spectrosc. 47(2): 173-179. 36.Hepburn, C. (1982) Polyurethane elastomers. Applied science publishers. New york. pp.2, 301-302. 37.Kaushiva, B. D. and G. L. Wilkes (2000) Alteration of polyurea hard domain morphology diethanol amine (DEOA) in molded flexible polyurethane foams. Polymer 41: 6981-6986. 38.Kim, H. D., T. J. Lee, J. H. Huh and D. J. Lee (1999) Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 73: 345-352. 39.Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) Analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 50: 407-414. 40.Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622. 41.Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74:151-157. 42.Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane film prepared from the liquefied wood. Biomas Bioenergy 21: 381-390. 43.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structure and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40. 44.Lee, S.H., M. Yoshioka and N. Shiraishi (2000a) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 78: 319-325. 45.Lee, S. H., M. Yoshioka and N. Shiraishi (2000b) Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde cocondensed resin. J. Appl. Polym. Sci. 77:2901-2907. 46.Lee, S. H., M. Yoshioka and N. Shiraishi (2000c) Liquefaction and product identification of corn bran (CB) in phenol. J. Appl. Polym. Sci. 78:311-318. 47.Lee, S. H., Y. Termoto and N. Shiraishi (2002a) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to Novolac-type phenolic resin. J. Appl. Polym. Sci. 83: 1473~1481. 48.Lee, S. H., Y. Termoto and N. Shiraishi (2002b) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 83: 1482~1489. 49.Lee, S. H., Y. Termoto and N. Shiraishi (2002c) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472. 50.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1996) Molecular weight and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64: 351-357. 51.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohyd. Polym. 57: 123-129. 52.Lin, Y., F. Hsieh and H. E. Huff (1997) Water-blown flexible polyurethane foam extender with biomass materials. J. Appl. Polym. Sci. 65:695-703. 53.Moreland, J. C., G. L. Wilkes and R. B. Turner (1994) Viscoelastic behavior of flexible slabstock polyurethane foams: Dependence on temperature and relative humidity. I. Tensilie and compression stress (load) relaxation. J. Appl. Polym. Sci. 52: 549-568. 54.Nakashima, Y., J. J. Ge and K. Sakai (1996) Preparation and characteristics of low-density polyurethane foams derived from the barks of Acacia mearnsii and Cryptomeria japonica. Mokuzai Gakkaishi 42(11): 1105-1112. 55.Rogulska, M., A. Kultys and W. Podkościelny (2006) Studies on thermoplastic polyurethane based on new diphenylethane-derivative diols. I. Synthesis and characterization of segmented polyurethanes from HDI and MDI. Eur. Polym. J. 42: 1786-1797. 56.Rojas, A. J., J. H. Marciano and R. J. Williams(1982) Rigid polyurethane foams: A model of the foaming process. Polym. Eng. Sci. 22(13): 840-844. 57.Seo, W. J., H. C. Jung, J. C. Hyun, W. N. Kim, Y.-B. Lee, K. H. Choe and S.-B. Kim (2003) Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water. J. Appl. Ploym. Sci. 90: 12-21. 58.Shutov, F. A. (1991) Cellular structure and properties of foamed polymers. In ”Handbook of polymeric foams and technology”, Ed. by Klempner, D. and K. C. Frisch, Hanser. New York. pp.22-23. 59.Sonnenschein, M. F., R. Prange and A. K. Schrock (2007) Mechanism for compression set of TDI polyurethane foams. Polymer: 616-623. 60.Wei, Y., F. Cheng, H. Li, and J. Yu (2005) Properties and microstructure of polyurethane resins from liquefied wood. J. Appl. Polym. Sci. 95: 1175-1180. 61.Yamada, T. and H. Ono(2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J. Wood Sci. 47:458-464. 62.Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70: 61-67. 63.Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949. 64.Yilgor, I., E. Yilgor, I. G. Guler, T. C. Ward and G. L. Wilkes (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47: 4105-4114. 65.Zhang, X. D., C. W. Macosko, H. T. Davis, A. D. Nikolov and D. T. Wasan (1999) Role of silicone surfactant in flexible polyurethane foams. J. Colloid Interf. Sci. 215: 270-279.
摘要: 
本研究以聚乙二醇-丙三醇混合液為液化藥劑,鹽酸及硫酸為催化劑,對未處理及經乙醇萃取之柳杉木材及樹皮進行液化處理,並以液化產物之殘渣率、黏度、不揮發分、酸價、羥價做為液化效果之評估指標;進一步將液化產物與聚二苯甲烷二異氰酸酯(PMDI)混合,並添加水為發泡劑、有機矽氧烷為界面活性劑、二月桂酸二丁基錫為催化劑製造硬質聚胺基甲酸酯發泡體 (Polyurethane foams;PU foams);另將液化柳杉與Desmodur N混合,並加入界面活性劑、催化劑及1,4-丁二醇為鏈延長劑製造回彈性PU發泡體及PU彈性體。由試驗結果得知,柳杉木材有較高之全纖維素含量,樹皮則有較多之木質素及抽出成分含量;心、邊材之化學主成分無明顯差異,抽出成分含量則以心材大於邊材;經乙醇萃取處理對柳杉之化學主成分無影響,醇苯抽出物含量則明顯降低。液化處理時,各部位柳杉木材及經乙醇萃取材均有良好之液化效果,在液比2.5/1,經150℃加熱90 min後,其中液化木材之殘渣率在2.06%以下。樹皮則較不易進行液化處理,其液比須3/1以上,且所得液化樹皮之殘渣率及黏度均較高。各不同條件液化柳杉均可與PMDI反應製造硬質PU發泡體,所得發泡體之密度介於0.027~0.059 g/cm3,其外觀型態及物理機械性質受液化產物之特性所影響,以液化柳杉木材所製作者有較高之壓縮強度,以液化邊材及樹皮所製備者吸水能力較佳。將液化柳杉與Desmodur N反應可製造軟質PU發泡體及PU彈性體,其軟質PU發泡體具有回彈特性及壓縮回復性,吸水能力較PMDI製造者低,密度介於0.15-0.19 g/cm3。各種液化柳杉應用於PU彈性體製造時,以液化木材為原料所製造者,其彈性係數、拉伸強度及破壞伸長率較高。DSC熱分析顯示常溫硬化之PU發泡體及彈性體在高溫加熱過程中會出現後硬化放熱現象,但約在300℃產生熱裂解現象。

In this study, both the untreated and ethanol extracted wood and bark of Cryptomeria japonica were liquefied in polyethylene glycol-glycerol co-solvent with HCl and H2SO4 as catalyst. The residue content, viscosity, nonvolatile, acid number and hydroxyl number of the liquefied materials were used as the index to evaluate the efficiency of liquefaction. The liquefied materials were blended with PMDI (poly-4,4'-diphenylmethane diisocyanate), and adding water as a blowing agent, organosiloxane as a surfactant and dibutyl tin dilaurate as a catalyst to prepare the rigid polyurethane (PU) foams. Besides, the liquefied materials were blended with the Desmodur N (trimer of hexamethylene diisocyanate), and adding the surfactant, catalyst and 1,4-butanediol to prepare the flexible PU foams and PU elastomers. From the results, the wood of C. japonica had higher content of holocellulose than the bark, but less content of lignin and extractive than the bark. It was unobvious difference between the heartwood and sapwood in the content of main chemical component. Heartwood had more extractive than sapwood. The ethanol extraction would not influence the main chemical component of C. japonica, but would decrease the extractive content. Both the untreated and ethanol extracted wood had good liquefaction effect. As liquefied with the weight ratio of solvent to wood at 2.5/1 and heating at 150℃ for 90 minutes, the un-liquefied residue in the liquefied wood was lower than 2.06%. However, the bark was more difficult to be liquefied, the weight ratio of solvent/wood used should be over 3.0/1, but the liquefied bark still had more residue content and higher viscosity. All of the C. japonica those liquefied with various liquefaction conditions could react with PMDI to manufacture the rigid PU foams. The density of these PU foams was between 0.027 and 0.059 g/cm3. However, the appearance and physical mechanical properties of PU foams were affected by characteristic of liquefied materials. The PU forms made from liquefied wood had higher compressive strength. But those made from liquefied sapwood or liquefied bark had better water adsorption properties. The liquefied Cryptomeria japonica could react with Desmodus N to make the flexible PU foams and elastomers. The density of flexible PU foams from liquefied wood and bark were between 0.15 and 0.19 g/cm3, and had the flexible and compression reversional properties. But their water adsorption property was worse than rigid PU foams made from PMDI. While the liquefied C. japonica was applying to make the PU elastomers, using the liquefied wood as raw materials had higher elastic module, tensile strength and broken elongation than others. The DSC thermal analysis showed that the PU foams and elastomers cured at room temperature would appear a post-curing exothermic phenomenon under the heating process. The thermal degradation of PU products would occur at the temperature about 300℃.
URI: http://hdl.handle.net/11455/65892
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.