Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65902
DC FieldValueLanguage
dc.contributor劉正字zh_TW
dc.contributor盧崑宗zh_TW
dc.contributor黃金城zh_TW
dc.contributor林正榮zh_TW
dc.contributor.advisor李文昭zh_TW
dc.contributor.advisorWen-Jau Leeen_US
dc.contributor.author鄭彥宇zh_TW
dc.contributor.authorJeng, Yan-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-09T09:28:55Z-
dc.date.available2014-06-09T09:28:55Z-
dc.identifier.citation1.王秀華 (2002) 木材化學及其應用。國立編譯館。台北。pp.148-150。 2.戈进杰 編著 (2002) 生物降解高分子材料及其应用。化學工业出版社。北京。pp.180-186。 3.台灣區造紙工業同業公會 (2006) 台灣造紙工業統計 The statistics of Taiwan paper industry 2006。pp.1-21。 4.李文昭 (1998) 溶解相思樹樹皮製造酚-甲醛木材膠合劑之研究。林產工業 17(4):681-696。 5.李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。 6.李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-杉木液化及液化木材膠合劑製備。林業研究季刊 24(1):11-20。 7.李文昭、劉正字、侯家翔 (2003a) 杉木木材之液化處理及其在酚-甲醛膠合劑之應用。林業研究季刊 25(3):73-86。 8.李文昭、張嘉方 (2003b) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。 9.李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 10.李文昭、劉正字、侯家翔 (2004b) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23(1):43-53。 11.李文昭、張嘉方 (2004c) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23:239-248。 12.李文昭、張國峻、宋憶青、陳奕君 (2006) 柳杉木材之酚液化處理及其在Resol型PF樹脂製備之應用。中華林學季刊 39(4):517-530。 13.李绍雄、刘益军 編著(2002) 聚氨酯树脂及其应用。化學工业出版社。北京。 pp. 124-230。 14.林孟萱、李文昭 (2005) 多元醇液化杉木及相思樹木材在PU樹脂膠合劑之應用。中華林學會94年度學術論文發表會論文集。中華林學會出版 pp.631-646。 15.吳秋昌、李文昭 (2006) 多元醇液化木質材料-環氧樹脂聚摻合樹脂之製備及其應用。中華林學會95年度學術論文發表會論文集。中華林學會出版 pp.393-402。 16.吳舜英 (1997) 塑膠發泡成形技術。高分子工業雜誌社。台北。pp. 51-52。 17.周佳儒、李文昭 (2006) 多元醇液化竹材應用於PU膠合劑及低密度板材製造。中華林學會95年度學術論文發表會論文集。中華林學會出版 pp.1107-1116。 18.陳奕君、李文昭、劉正字 (2006) 液化孟宗竹材製備Resol型水溶性酚樹脂。林產工業25(3):249-258。 19.陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.11-19。 20.陳錫疇 譯著 (1989) 有機光譜分析。銀禾文化事業有限公司。台北。pp.22。 21.張上鎮、吳季玲、王升陽、張惠婷 (1997) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業16(4):825-838。 22.張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1):11-18。 23.曾勝茂、謝國煌 (2003) 和我們形影不離的聚胺酯製品。科學發展月刊 326:22-25。 24.康甄玲、李文昭、陳奕君、宋憶青 (2006) 柳杉心材與邊材之酚液化處理效果及其在Resol型酚樹脂製備之應用。中華林學會95年度學術論文發表會論文集。中華林學會出版 pp.1117-1126。 25.游瑞成 譯 (1987) 有機光譜學。徐氏基金會。台北。pp.114-116。 26.賀孝雍 譯著 (1998) 有機化合物之光譜鑑別法。眾光文化事業有限公司。台北。pp.95-180 27.蔡信行 主編(2002) 新版聚合物化學。新文京開發出版有限公司。台北。pp.313-427。 28.賴耿陽 譯著 (1997) 聚脲樹脂PU原理及實用。復漢出版社。台南。pp.1-11。pp.63-112。 29.Acemioglu, B. and M. H. Alma (2002) Kinetics of wood phenolysis in the presence of HCl as catalyst. J. Appl. Polym. Sci. 85:1098-1103. 30.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Sci. Technol. 30:39-47. 31.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials. Mokuzai Gakkaishi 41(8):741-748. 32.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996) Phenolation of wood using oxalic acid as catalyst : Effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61:675-683. 33.Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1998) Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Sci. Technol. 32:297-308. 34.Cao, B., U. Tschirner, and S. Ranaswamy (1998) Impact of pulp chemical composition on recycling. TAPPI J. 81(12):119-127. 35.Christenson, C. P., M. A. Harthcock, M. D. Meadows, H. L. Spell, W. L. Howard, M. W. Creswick, R. E. Guerra and R. B. Turner (1986) Model MDI/butanediol polyurethanes: molecular structure, morphology, physical and mechanical properties. J. Polym. Sci. Polym. Phys. 24:1401-1439. 36.Ge, J., W. Zhong, Z. Guo, W. Li and K. Sakai (2000) Biodegradable polyurethane materials from bark and starch. I. Highly resilient foams. J. Appl. Polym. Sci. 77:2575-2580 37.Haseh, J. A., J. E. Andrewa, J. V. McClusky, R. D. Priester, JR., M. A. Harthcock and B. L. Davis (1993) Characterization of polyurethane foams by mid-infrared fiber/FT-IR spectrometry. Appl. Spectrosc. 47(2):173-179. 38.Hatakeyama H. and T. Hatakeyama (2005a) Environmentally compatible hybrid-type polyurethane foams containing saccharide and lignin components. Macromol. Symp. 224:219-226. 39.Hatakeyama H., N. Tanamachi, H. Matsumura, S. Hirose and T. Hatakeyama (2005b) Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry. Therochimica Acta 431:155-160. 40.Havlínova, B., D. Babiaková, V. Brezová, M. Ďurovič, M. Novotná and F. Belányi (2002) The stability of offset inks on paper upon ageing. Dyes Pigments 54:173-188. 41.Jolly, P. and Kien L. N. (2007) Development of the photoacoustic rapid-scan FT-IR-Based method for measurement of ink concentration on printed paper. Anal. Chem. 79:2259-2265. 42.Kobayashi, M., K. Tukamoto and B. Tomita (2000) Application of liquefied wood to a new resin system synthesis and properties of liquefied wood/epoxy resins. Holzforschung 54:93-97. 43.Kobayashi, M., Y. Hatano and B. Tomita (2001) Viscoelastic properties of liquefied wood/epoxy resin and its bond strength. Holzforschung 55:667-671. 44.Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) Analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 50:407-414. 45.Kurimoto, Y., M. Takeda, S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617-122. 46.Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74:151-157. 47.Kurimoto, Y., A. Koizumi, S. Doi and Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass and Bioenergy 21:381-390. 48.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77:33-43. 49.Lee, S.H., M. Yoshioka and N. Shiraishi (2000a) Liquefaction and product identification of corn bran (CB) in phenol. J. Appl. Polym. Sci. 78:311-318. 50.Lee, S.H., M. Yoshioka and N. Shiraishi (2000b) Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 78:319-325. 51.Lee, S.H., M. Yoshioka and N. Shiraishi (2000c) Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde cocondensed resin. J. Appl. Polym. Sci. 77:2901-2907. 52.Lee, S.H., Y. Teramoto and N. Shiraishi (2002a) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to novolak-type phenolic resin J. Appl. Polym. Sci. 83:1473-1481. 53.Lee, S.H., Y. Teramoto and N. Shiraishi (2002b) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 83:1482-1489. 54.Lee, S.H., Y. Teramoto and N. Shiraishi (2002c) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472. 55.Lee, S.H. (2003) Phenolic resol resin from phenolated corn bran an its characteristics. J. Appl. Polym. Sci. 87:1365-1370. 56.Lee, W. J. and C. T. Liu (2003) Preparation of liquefied bark-based resol resin and its application to particleboard. J. Appl. Polym. Sci. 87:1837-1841. 57.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1994) Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J. Appl. Polym. Sci. 52:1629-1639. 58.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1997) Molecular weights and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64:351-357. 59.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polymers 57:123-129. 60.Mondal, P. and D. V. Khakhar (2004) Regulation of cell structure in water blown rigid polyurethane foam. Macromol. Symp. 216:241-254. 61.Samil, A., M. H. Alma and B. Acemioğlu (2005) Dissolution of condensed tannin with phenol : optimum reaction parameters and some flow properties. J. Appl. Polym. Sci. 98:2450-2453. 62.Seo W. J., H. C. Jung, W. N. Kim, Y.-B. Lee, K. H. Choe, S.-B. Kim (2003) Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water. J. Appl. Polym. Sci. 90:12-21. 63.Sun, J. X., R. C. Sun, X. F. Sun and Y. Q. Su (2004) Fractional and physico-chemical characterization of hemicellulose form ultrasonic irradiated sugarcane bagasse. Carbohydr. Res. 339:291-300. 64.Tohmura, S.I., G. Y. Li and T. F. Qin (2005) Preparation and characterization of wood polyalcohol-based isocyanate a dhesives. J. Appl. Polym. Sci. 98:791-795. 65.Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70:61-67. 66.Yamada, T. and H. Ono (2001) Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J. Wood Sci. 47:458-464. 67.Yao, Y., M. Yoshioka and N.Shiraishi (1995) Rigid polyurethane foams from combined liquefied mixtures of wood and starch. Mokuzai Gakkaishi 41(7):659-668. 68.Zhang, X. D., C. W. Macosko, H. T. Davis, A. D. Nikolov and D. T. Wasan (1999) Role of silicone surfactant in flexible polyurethane foam. J. Colloid Interface Sci. 215:270-279. 69.Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2005) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresource Technol. 97:313-321. 70.化學中心-綠色/永續化學網路資源共享網。http://www.sinica.edu.tw/chem/gc/bioen.html。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/65902-
dc.description.abstract本研究以影印紙、新聞紙、瓦楞紙板及廣告塗佈紙等四種廢紙為原料,以聚乙二醇-丙三醇(PEG-Glycerol)混合藥劑為液化藥劑,硫酸為催化劑進行液化處理,所獲得之液化廢紙則分別與聚二苯甲烷二異氰酸酯(PMDI)及Desmodur L兩種異氰酸酯混合製備聚胺基甲酸酯樹脂(Polyurethane;PU),探討不同種類液化廢紙與異氰酸酯所製備PU樹脂之性質,並進一步將液化廢紙與PMDI及Desmodur L混合,並添加水為發泡劑、有機矽氧烷為界面活性劑、二月桂酸二丁基錫為催化劑製造PU發泡體,探討液化廢紙種類、異氰酸酯種類及界面活性劑、催化劑、發泡劑添加量等條件對發泡體性質之影響。由結果可知,影印紙有較高之全纖維素含量,新聞紙及瓦楞紙板則有較多之木質素含量,廣告塗佈紙則灰分含量較高。以多元醇進行廢紙液化時,廢紙組成分、液化溶劑/廢紙重量比(液比)、酸催化劑添加量等均會影響其液化效果,其中以木質素含量較高的新聞紙及瓦楞紙板之液化效果較佳。兩種異氰酸酯比較,以Desmodur L為異氰酸酯所製備PU薄膜之機械性質較以PMDI為異氰酸酯所製備者剛硬;四種液化廢紙比較,以液化影印紙(A2)及液化廣告塗佈紙(D)為多元醇所製造PU薄膜具較佳之機械性質及耐溶劑性。將液化廢紙與PMDI反應製造PU發泡體時,其適宜之組成分條件為[NCO]/[OH+COOH]莫耳比為1.2,界面活性劑、催化劑及發泡劑之添加量分別為液化廢紙重之3%、3%及0.5%;而以Desmodur L為異氰酸酯者其適用條件則依液化廢紙種類而異,其中以液化影印紙(A2)及液化廣告塗佈紙(D)為多元醇原料者之適宜條件為[NCO]/[OH+COOH]莫耳比1.2,界面活性劑、催化劑及發泡劑之添加量分別為8%、6%及5%,而以液化新聞紙(B)及液化瓦楞紙板(C)為多元醇原料者則宜採用之界面活性劑、催化劑及發泡劑之添加量分別為12%、8%及5%。zh_TW
dc.description.tableofcontents摘要...................................................... i SUMMARY.................................................. ii 目次..................................................... iv 圖目次....................................................... vi 表目次....................................................... xi 第一章 前言............................................... 1 第二章 文獻回顧........................................................ 3 一、 生物質之液化作用........................................................ 3 二、 PU之化學原理及其應用........................................................ 8 三、 回收廢紙之再利用....................................................... 12 第三章 廢紙之液化處理及其液化產物之性質.................. 14 一、 試驗材料與方法.................................. 14 (一) 試驗材料...................................... 14 (二) 試驗方法...................................... 15 二、 結果與討論...................................... 21 (一) 廢紙之前處理.................................. 21 (二) 不同種類廢紙之組成分.......................... 22 (三) 液化廢紙之性質................................ 23 第四章 液化廢紙與異氰酸酯反應製造PU樹脂之性質............ 34 一、 試驗材料與方法.................................. 34 (一) 試驗材料...................................... 34 (二) 試驗方法...................................... 35 二、 結果與討論.......................................... 39 (一) PU樹脂之硬化性.................................... 39 (二) PU薄膜之重量保留率................................ 42 (三) PU薄膜之拉伸性質.................................. 44 (四) PU薄膜之FT-IR分析................................. 49 (五) PU薄膜之熱性質分析................................ 52 第五章 液化廢紙與異氰酸酯反應製造PU發泡體................ 57 一、 試驗材料與方法.................................. 57 (一) 試驗材料...................................... 57 (二) 試驗方法...................................... 58 二、 結果與討論.......................................... 61 (一) 不同組成物調配條件對PMDI-液化廢紙PU發泡體發泡特性之影響....................................................... 62 (二) 不同組成物調配條件對Desmodur L-液化廢紙PU發泡體發泡特性之影響................................................. 67 (三) 不同液化廢紙種類對PU發泡體發泡特性之影響.......... 72 (四) PMDI-液化廢紙PU發泡體之性質...................... 75 (五) Desmodur L-液化廢紙PU發泡體之性質................ 83 第六章 結論.............................................. 89 參考文獻................................................. 91zh_TW
dc.language.isoen_USzh_TW
dc.publisher森林學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1408200714231200en_US
dc.subjectWaste papersen_US
dc.subject廢紙zh_TW
dc.subjectLiquefied waste paperen_US
dc.subjectPolyhydric alcoholen_US
dc.subjectPolyurethane resinsen_US
dc.subjectFoamsen_US
dc.subject液化廢紙zh_TW
dc.subject多元醇zh_TW
dc.subject聚胺基甲酸酯樹脂zh_TW
dc.subject發泡體zh_TW
dc.title多元醇液化廢紙及其應用於PU樹脂製備之探討zh_TW
dc.titleStudy on Polyhydric Alcohol Liquefied Waste Papers and Application in the Manufacturing of Polyurethane Resinsen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:森林學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.