Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65904
標題: 二氧化碳與氮養分濃度對樟樹苗木的生長與生理反應之影響
Effects of concentrations of carbon dioxide and nitrogen nutrient on growth and physiological responses in Cinnamomum camphora seedlings
作者: 何冠琳
Her, Guann-Lin
關鍵字: 二氧化碳;carbon dioxide;氮養分;生長;氣體交換測定;葉綠素螢光;碳氮分配;nitrogen nutrient;growth;gas exchange measurement;chlorophyll fluorescence;carbon and nitrogen allocation
出版社: 森林學系所
引用: 何冠琳、許博行 (2001) 二氧化碳濃度與溫度對樟樹苗木之形質生長參數與葉綠素螢光反應之影響。林業研究季刊。23(3): 1-20。 李芳婷 (2002) 台中港區木麻黃防風林固氮量與濃度動態之研究。國立中興大學森林學研究所碩士論文。 林君如、許博行 (2003) 二氧化碳濃度與氮肥對樟樹苗木生長與光合作用之影響。林業研究季刊。25(1): 1-14。 柯錦月 (1994) 供源-積儲與大豆醣類代謝之關係。國立中興大學植物學研究所博士論文。 倪禮豐、鍾仁賜 (1997) 採收時間及遮陰對芥藍菜(Brassica oleraceae L.)氮組成及硝酸還原酵素活性之影響。花蓮改良場研究彙報。14: 61-77。 黃乃宏 (1993) 醣類含量與林木種子之儲存性質之探討。國立中興大學植物學研究所碩士論文。 許博行、潘德發 (1994) 二氧化硫污染對木荷苗木碳水化合物分配之影響。中華林學季刊。27(4): 3-14。 許博行、盧昕玗 (1998) 二氧化碳濃度與溫度對木荷苗木生長、葉綠素螢光反應與核酮醣雙磷酸羧化/加氧酵素之影響。中華林學季刊。31(2): 141-151。 許博行、林君如 (2003) 二氧化碳濃度與氮肥對樟樹苗木硝酸還原酵素活性之影響。林業研究季刊。25(4): 65-74。 陳建明、俞曉平、程家安 (2006) 葉綠素螢光動力學及其在植物抗逆生理研究中的應用。浙江農業學報。18(1): 51-55。 張其德、盧從明、劉麗娜、白克智、匡廷雲、郭建平、高素華、王春乙 (1996a) 二氧化碳加富對大豆葉片光系統II功能的影響。植物生態學報。20(6): 517-523。 張其德、盧從明、劉麗娜、林世青、匡廷雲、白克智 (1996b) CO2加富對紫花苜蓿光合作用原初光能轉換的影響。植物學報。38(1): 77-82。 張其德、盧從明、劉麗娜、白克智、匡廷雲 (1997) CO2倍增對不同基因型大豆光合色素含量和螢光誘導動力學參數的影響。植物學報。39(10): 946-950。 張上鎮、王升陽、葉汀峰、吳季玲 (1997) 超音波法快速萃取及定量葉綠素。台灣林業科學。12(3): 329-334。 張守仁 (1999) 葉綠素螢光動力學參數的意義及討論。植物學通報。16(4): 444-448。 馮建汕、胡秀麗、毛訓甲 (2002) 葉綠素螢光動力學在研究植物逆境生理的應用。經濟林研究。20(4): 14-18。 劉銘煌 (1995) 氮型態對草海桐及白水草苗木生長及生理反應之影響。國立中興大學森林學研究所碩士論文。 盧從明、張其德、馮麗潔、匡廷雲、郭建平、王春乙 (1997) CO2濃度倍增對穀子拔節期和灌漿期光合色素含量和PSII功能的影響。植物學報。39(9): 874-878。 Ainsworth, E. A. and Long, S. P. (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165: 351-372. Allen, S., Raven, J. A., and Sprent, J. I. (1988) The role of long-distance transport in intracellular pH regulation in Phaseolus vulgaris grown with ammonium or nitrate as nitrogen source, or nodulated. Journal of Experimental Botany 39: 513-528. Aranjuelo, I., Pérez, P., Hernández, L., Irigoyen, J. J., Zita, G., Martínez-Carrasco, R., and Sánchez-Díaz, M. (2005) The response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic downregulation. Physiologia Plantarum 123: 348-358. Atkinson, C. J. (1996) Global changes in atmospheric carbon dioxide: the influence on terrestrial vegetation. In: Plant Response to Air Pollution. Yunus, M. and Iqbal, M. eds. Chichester.Wiley. New York. pp. 99-133. Ayling, S. M. (1993) The effect of ammonium ions on membrane potential and anion flux in roots of barley and tomato. Plant, Cell and Environment 16: 297-303. Baker, N. R. and Rosenqvist, E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55: 1607-1621. Barber, S. A. (1984) Soil Nutrient Bioavailability-A Mechanistic Approach. A Wiley- Interscience Publication. Wiley. New York. pp. 179-200. Bassirirad, H., Caldwell, M. M., and Bilbrough, C. (1993) Effects of soil temperature and nitrogen status on kinetics of 15NO3- uptake by roots of field-grown Agropyron desertorum (Fisch. ex Link) Schult. New Phytologist 123: 485-489. Bassirirad, H., Thomas, R. B., Reynolds, J., and Strain, B. R. (1996) Differential responses of root uptake kinetics of NH4+ and NO3- to enriched atmospheric CO2 concentration in field-grown loblolly pine. Plant, Cell and Environment 19: 367-371. Bassirirad, H. (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytologist 147: 155-169. Bauer, G. A. and Berntson, G. M. (2001) Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiology 21: 137-144. Benabdellah, K., Azcón-Aguilar, C., and Ferrol, N. (1999) Plasma membrane ATPase and H+ transport activities in microsomal membranes from mycorrhizal tomato roots. Journal of Experimental Botany 50: 1343-1349. Benito, B., Portillo, F., and Lagunas, R. (1992) In vivo activation of the yeast plasma membrane ATPase during nitrogen starvation-identification of the regulatory domain that controls activation. FEBS Letter 300: 271-274. Berntson, G. M. and Bazzaz, F. A. (1998) Regenerating temperate forest mesocosms in elevated CO2: belowground growth and nitrogen cycling. Oecologia 113: 115-125. Berntson, G. M., Rajakaruna, N., and Bazzaz, F. A. (1998) Growth and nitrogen uptake in an experimental community of annuals exposed to elevated atmospheric CO2. Global Change Biology 4: 607-626. Bettarini, I., Calderoni, G., Miglietta, F., Raschi, A., and Ehleringer, J. (1995) Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy. Tree Physiology 15: 327-332. Black, B. L., Fuchigami, L. H., and Coleman, G. D. (2002) Partitioning of nitrogen assimilation among leaves, stems and roots of popular. Tree Physiology 22: 717-724. Bondada, B. R. and Syvertsen, J. P. (2003) Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leave of different nitrogen status. Tree Physiology 23: 553-559. Braford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. Bremner, J. M. (1965) Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen, nitrogen availability indexes. In: Methods of Soil Analysis. Part 2. Black, C. A. et al. eds. Madison, Wisconsin: American Society of Agronomy 9: 1149-1348. Breteler, H. and Nissen, P. (1982) Effect of exogenous and endogenous nitrate concentration on nitrate utilization by dwarf bean. Plant Physiology 70: 754-759. Briskin, D. P., Basu, S., and Ho, I. S. (1992) Studies on the reaction mechanism and transport function of P-type ATPase associated with the plant plasma membrane. In: Transport and Receptor Proteins of Plant Membranes. Cooke, D. T. and Clarkson, D. T. eds. Pleum Press. New York. pp. 13-24. Brix, H., Dyhr-Jensen, K., and Lorenzen, B. (2002) Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany 53: 2441-2450. Cao, B., Dang, Q. L., and Zhang, S. R. (2007) Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birth seedlings. Tree Physiology 27: 891-899. Centritto, M., Lee, H. S. L., and Jarvis, P. G. (1999) Increased growth in elevated [CO2]: an early, short-term response? Global Change Biology 5: 623-634. Cerezo, M., Flors, V., Legaz, F., García-Agustín, P. (2000) Characterization of the low affinity transport system for NO3- uptake by Citrus roots. Plant Science 160: 95-104. Ceulemans, R. and Mousseau, M. (1994) Effects of elevated atmospheric CO2 on woody plants. New Phytologist 127: 425-446. Chen, L. S. and Cheng, L. L. (2003) Both xanthophylls cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L. cv. Concord) leaves in response to N limitation. Journal of Experimental Botany 54: 2165-2175. Chen, G. Y., Yong, Z. H., Liao, Y., Zhang, D. Y., Chen, Y., Zhang, H. B., Chen, J., Zhu, J. G., and Xu, D. Q. (2005) Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiology 46: 1036-1045. Cheng, W. X. (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiology 19: 313-320. Cheng, L. and Fuchigami, L. H. (2002) Growth of young apple trees in relation to reserve nitrogen and carbonhydrates. Tree Physiology 22: 1297-1303. Cheng, L. L. (2003) Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. Journal of Experimental Botany 54: 385-393. Chien, C. T. and Lin, T. P. (1994) Mechanism of hydrogen peroxide in improving the germination of Cinnamomum camphora seed. Seed Science and Technology 22: 231-236. Ciompi, S., Gentili, E., Guidi, L., Soldatini, G. F. (1996) The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science 118: 177-184. Clarkson, D. T. (1996) Root structure and sites of ion uptake. In: Plant Roots-The Hidden Half. Waisel, Y., Eshel, A., and Kafkafi, U. eds. Marcel Dekker, Inc. New York. pp. 483-510. Clearwater, M. J. and Meinzer, F. C. (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiology 21: 683-690. Coruzzi, G. and Bush, D. R. (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 125: 61-64. Couteaux, M. -M., Kurz, C., Bottner, P., and Raschi, A. (1999) Influence of increase atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiology 19: 301-311. Crawford, N. M. and Glass, A. D. M. (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 3: 389-395. Cruz, C., Lips, S. H., and Martins-Loução, M. A. (1997) Changes in the morphology of roots and leaves of carob seedlings induced by nitrogen source and atmospheric carbon dioxide. Annals of Botany 80: 817-823. Curtis, P. S., Zak, D. R., Pregitzer, K. S., and Teeri, J. A. (1994) Above- and belowground response of Populus grandidentata to elevated atmospheric CO2 and soil N availability. Plant and Soil 165: 45-51. Curtis, P. S., Vogel, C. S., Wang, X., Pregitzer, K. S., Zak, D. R., Lussenhop, J., Kubiske, M., and Teeri, J. A. (2000) Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. Ecological Applications 10: 3-17. Deane-Drummond, C. E. (1990) Biochemical and biophysical aspects of nitrate uptake and its regulation. In: Nitrogen in Higher Plants. Abrol, Y. P. ed. Taunton, Somerset: Research studies press. Wiley. New York. pp. 1-37. Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D. A., Cundari, C. M., Johnson, D. P., Hungate, B. A., Hinkle, C. R., and Drake, B. G. (2002) Elevated atmospheric CO2 stimulates aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change Biology 8: 90-103. Drew, M. C. (1987) Function of root tissues in nutrient and water transport. In: Root Development and Function. Gregory, P. J., Lake, J. V., and Rose, D. A. eds. Cambridge University Press. Cambridge, London. pp. 71-101. Dyckmans, J. and Flessa, H. (2002) Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration. Tree Physiology 22: 41-49. Dyhr-Jensen, K. and Brix, H. (1996) Effects of pH on ammonium uptake by Typha latifolia L. Plant, Cell and Environment 19: 1434-1436. Ellsworth, D. S., Reich, P. B., Naumburg, E. S., Koch, G. W., Kubiske, M. E., and Smith, S. D. (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Global Change Biology 10: 2121-2138. Epron, D., Dreyer, E., Picon, C., and Guehl, J. M. (1994) Relationship between CO2- dependent O2 evolution and photosystem II activity in oak (Quercus petraea) trees grown in the field and in seedlings grown in ambient or elevated CO2. Tree Physiology 14: 725-733. Espen, L., Nocito, F. F., and Cocucci, M. (2004) Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots. Journal of Experimental Botany 55: 2053-2061. Evans, J. R. (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology 72: 297-302. Evans, J. R. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. Evans, J. R. (1996) Developmental constraints on photosynthesis: effects of light and nutrition. In: Photosynthesis and the Environment. Baker, N. R. ed. Kluwer Academic Publishers. Dordrecht, Boston. pp. 281-304. Farage, P. K., McKee, I. F., and Long, S. P. (1998) Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2? Plant Physiology 118: 573-580. Field, C. (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56: 341-347. Field, C. and Mooney, H. A. (1986) The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function. Givnish, T. J. ed. Cambridge University Press. Cambridge, London. pp. 25-55. Flowers, T. J. and Yeo, A. R. (1992) Solute Transport in Plants. 1st ed. Blackie Academic and Professional. Chapman and Hall. London. pp. 1-73. Forde, B. G. and Clarkson, D. T. (1999) Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Advances in Botanical Research 30: 1-90. Foyer, C. H., Valadier, M. H., and Ferrario, S. (1995) Co-regulation of nitrogen and carbon assimilation in leaves. In: Environment and Plant Metabolism- Flexibility and Acclimation. Smirnoff, N. ed. Bios Scientific. Oxford, UK. pp. 17-33. Foyer, C. H., Ferrario-Méry, S., and Noctor, G. (2001) Interactions between carbon and nitrogen metabolism. In: Plant Nitrogen. Lea, P. L. and Morot-Gaudry, J. -F. eds. Springer-Verlag Berlin Heidelberg. INRA Paris. pp. 237-254. Foyer, C. H. and Noctor, G. (2002) Photosynthetic nitrogen assililation: inter-pathway control and signaling. In: Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Foyer, C. H. and Noctor, G. eds Dordrecht. Kluwer Academic Publishers. Boston, Mass. pp. 1-22. Gebauer, G. and Standler, J. (1990) Nitrate assimilation and nitrate content in different organs of ash trees (Fraxinus excelsior). In: Plant Nutrition-Physiology and Applications. van Beusichem, M. L. ed. Kluwer Academic Publishers. Dordrecht, Netherlands. pp. 101-106. Geiger, M., Haake, V., Ludewig, F., Sonnewald, U., and Stitt, M. (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell and Environment 22: 1177-1199. Gerendás, J. and Sattelmacher, B. (1990) Influence of nitrogen form and concentration on growth and ionic balance of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum). In: Plant Nutrition-Physiology and Applications. van Beusichem, M. L. ed. Klumwer Academic Publishers. Dordrecht, Netherlands. pp. 33-37. Goldsmith, J., Livoni, J. P., Norberg, C. L., and Segel, I. H. (1973) Regulation of nitrate uptake in Penicillium chrysogenum by ammonium ion. Plant Physiology 52: 362-367. Gower, S. T. and Richards, J. H. (1990) Larches: deciduous conifers in an evergreen world-In their harch environments, these unique conifers support a net carbon gain similar to evergreens. Bioscience 40: 818-826. Greef, J. M. and Geisler, G. (1991) Nitrate uptake in response to soluble carbohydrates from roots and shoots of young maize plants (Zea mays L.). In: Plant Roots and Their Environment. McMichael, B. L. and Persson, H. eds. Elservier Science Publishers. Amsterdam, New York. pp. 73-80. Griffin, K. L., Anderson, O. R., Gastrich, M. D., Lewis, J. D., Lin, G H., Schuster, W., Seemann, J. R., Tissue, t. D., Turnbull, M. H., and Whitehead, D. (2001) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proceedings of the National Academy of Sciences of the United States of America 98: 2473-2478. de Groot, C. C., van den Boogaard, R., Marcelis, L. F. M., Harbinson, J., and Lambers, H. (2003) Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. Journal of Experimental Botany 54: 1957-1967. Gucinski, H. (1994) The potential effect of global climate change on terrestrial vegetation. In: Plant Response to the Gaseous Environment-Molecular, Metabolic and Physiological Aspects. Alscher, R. G. and Wellburn, A. R. eds. Chapman and Hall. Cambridge University Press. Cambridge, London. pp. 1-20. Guehl, J. M., Picon, C., Aussenac, G., and Gross, P. (1994) Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiology 14: 707-724. Gulmon, S. L. and Chu, C. C. (1981) The effects of light and nitrogen on photosynthesis, leaf characteristics, and dry matter allocation in the chaparral shrub, Diplacus aurantiacus. Oecologia 49: 207-212. Gunderson, C. A. and Wullschleger, S. D. (1994) Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Research 39: 369-388. Hall, D. O., Scurlock, J. M. O., Bolhàr-Nordenkampf, H. R., Leegood, R. C., and Long, S. P. (1993) Photosynthesis and Production in a Changing Environment. Chapman and Hall. London. New York. pp. 193-205. Harbinson, J., Genty, B., and Baker, N. R. (1990) The relationship between CO2 assimilation and electron transport in leaves. Photosynthesis Research 25: 213-224. Hirose, T. and Kitajima, K. (1986) Nitrogen uptake and plant growth II. An Empirical model of vegetative growth and partitioning. Annals of Botany 58: 487-496. Hirschel, G., Korner, C., and Arnone III, J. A. (1997) Will rising atmospheric CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110: 387-392. Hodges, T. K. and Leonard, R. T. (1974) Purification of a plasma membrane- bound adenosine triphosphatase from plant roots. Methods of enzymology 32:392-406. Høgh-Jensen, H., Wollenweber, B., and Schjoerring, J. K. (1997) Kinetics of nitrate and ammonium absorption and accompanying H+ fluxes in roots of Lolium perenne L. and N2-fixing Trifolium repens L. Plant, Cell and Environment 20: 1184-1192. Houssa, P., Bernier, G., and Kinet, J. M. (1991) Qualitative and Quantitative analysis of carbohydrates in leaf exudate of the short-day plant, Xanthium strumarium L. during floral transition. Journal of Plant Physiology 138: 24-28 Hungate, B. A., Dijkstra, P., Johnson, D. W., Hinkle, R., and Drake, B. G. (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology 5: 781-790. Hymus, G. J., Ellsworth, D. S., Baker, N. R., and Long, S. P. (1999) Does free-air carbon dioxide enrichment affect photochemical energy use by evergreen trees in different seasons? A chlorophyll fluorescence study of mature loblolly pine. Plant Physiology 120: 1183-1191. Iivonen, S., Rikala, R., Ryyppö, A., and Vapaavuori, E. (1999) Responses of scots pine (Pinus sylvestris) seedlings grown in different nutrient regimes to changing root zone temperature in spring. Tree Physiology 19: 951-958. Iivonen, S. and Vapaavuori, E. (2002) Seasonal variation in nitrogen net uptake and root plasma membrane H+-ATPase activity of Scots pine seedlings as affected by nutrient availability. Tree Physiology 22: 1-10. Imsande, J. and Touraine, B. (1994) N demand and the regulation of nitrate uptake. Plant Physiology 105: 3-7. Ingestad, T. and Ågren, G. I. (1992) Theories and methods on plant nutrition and growth. Physiologia Plantarum 84: 177-184. Inskeep, W. P. and Bloom, P. R. (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiology 77: 483-485. IPCC (2001) The scientific basis. In: Third Assessment Report of the Intergovermental Panel on Climate Change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. eds. Cambridge University Press. Cambridge, London. pp. 1-881. IPCC (2007) Summary for policymakers. In: Fourth Assessment Report of the Intergovermental Panel on Climate Change. Formally approved at the 9th Session of Working Group III of the IPCC. pp. 1-36. Ireland, C. R., Baker, N. R., and Long, S. P. (1987) Evidence for a physiological role of CO2 in the regulation of photosynthetic electron transport in intact leaves. Biochimica et Biophysica Acta 893: 434-443. Jackson, R. B. and Reynolds, H. L. (1996) Nitrate and ammonium uptake for single- and mixed-species communities growth at elevated CO2. Oecologia 105: 74-80. Janssens, I. A., Crookshanks, M., and Ceulemans, R. (1997) Fine root and rhizosphere respiration of young scots pine seedlings under elevated and ambient CO2. In: Impacts of Global Change on Tree Physiology and Forest Ecosystems. Mohren, G. M. J. eds. Klumer Academic Publishers. Dordrecht. pp.187-192. Jaworski, E. G. (1971) Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications 43: 1274-1279. Jifon, J. L. and Wolfe, D. W. (2002) Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Global Change Biology 8: 1018-1027. Jungk, A. O. (1996) Dynamics of nutrient movement at the soil-root interface. In: Plant Roots-The Hidden Half. Waisel, Y., Eshel, A., and Kafkafi, U. eds. Marcel Dekker, Inc. New York. pp. 529-556. Juurola, E. (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Tree Physiology 23: 85-95. Keutgen, N., Chen, K., and Lenz, F. (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. Journal of Plant Physiology 150: 395-400. King, B. J., Siddiqi, Y., Ruth, T. J., Warner, R. L., and Glass, A. D. M. (1993) Feedback regulation of nitrate influx in barley roots by nitrate, nitrite, and ammonium. Plant Physiology 102: 1279-1286. Kozlowski, T. T., Kramer, P. J., and Pallardy, S. G. (1991) Physiological Ecology of Woody Plants. 2nd ed. Academic Press. USA. pp. 376-400. van Kooten, O. and Snel, J. F. H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25: 147-150. Krall, J. P. and Edwards, G. E. (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86: 180-187. Krause, G. H. and Weis, E. (1988) The photosynthetic apparatus and chlorophyll fluorescence. In: Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Lichtenthaler, H. K. ed. Kluwer Academic. Dordrecht, Netherlands. pp. 3-11. Krause, G. H. and Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42: 313-349. Kubiske, M. E., Pregitzer, K. S., Mikan, C. J., Zak, D. R., Maziasz, J. L., and Teeri, J. A. (1997) Populus tremuloides photosynthesis and crown architecture in response to elevated CO2 and soil availability. Oecologia 110: 328-336. Kubiske, M. E., Pregitzer, K. S., Zak, D. R., and Mikan, C. J. (1998) Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO2 and soil nitrogen availability. New Phytologist 140: 251-260. Kubiske, M. E., Zak, D. R., Pregitzer, K. S., and Takeuchi, Y. (2002) Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Tree Physiology 22: 321-329. Kumar, P. A., Parry, M. A. J., Mitchell, R. A. C., Ahmad, A., and Abrol, Y. P. (2002) Photosynthesis and nitrogen-use efficiency. In: Photosynthetic Nitrogen Assimilation and Association Carbon and Respiratory Metabolism. Foyer, C. H. and Noctor, G. eds. Kluwer Academic Publishers. Dordrecht, Netherlands. pp. 23-34. Laitinen, K., Luomala, E.-M., Kellomäki, S., and Vapaavuori, E. (2000) Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Tree Physiology 20: 881-892. Lanfermeijer, F. C., Regenberg, B., Baunsgaard, L., Villalba, J. M., and Palmgren, M. G. (1996) Plant and fungal plasma membrane H+-ATPases: how alike are they with respect to regulation? In: Plant Membrane Biology. Møller, I. M. and Brodelius, P. eds. Clarendon Press. Oxford. pp. 247-264. Larcher, W. (1995) Physiological Plant Ecology. Chapter 2-3. 3rd ed. Springer-Verlag. Heidelberg, Berlin. pp. 57-213. Lawlor, D. W. (1994) Relation between carbon and nitrogen assimilation, tissue composition and whole plant function. In: A Whole Plant Perspective on Carbon-Nitrogen Interations. Roy, J. and Garnier, E. eds. Academic Publishing. USA. pp. 47-60. Lawlor, D. W. (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany 53: 773-787. Lawson, T., Oxborough, K., Morison, J. I. L., and Baker, N. R. (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiology 128: 52-62. Leigh, R. A. and Sze, H. (2001) Membrane transport meets plant nutrition. Trends in Plant Science 6: 47-48. Lewis, O. A. M. (1986) Plant and Nitrogen. Edward Arnold. London. pp. 21-83. Lewis, C. E., Noctor, G., Causton, D., and Foyer, C. H. (2000) Regulation of assimilate partitioning in leaves. Australian Journal of Plant Physiology 27: 507-519. Liozon, R., Badeck, F. -W., Genty, B., Meyer, S., and Saugier, B. (2000) Leaf photosynthetic characteristics of beech (Fagus sylvatica) saplings during three years of exposure to elevated CO2 concentration. Tree Physiology 20: 239-247. Longstreth, D. J. and Nobel, P. S. (1980) Nutrient influences on leaf photosynthesis. Plant Physiology 65: 541-543. Lu, C. M. and Zhang, J. H. (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Science 151: 135-143. Lu, C. M., Zhang, J. H., Zhang, Q., Li, L. B., and Kuang, T. Y. (2001) Modification of photosystem II photochemistry in nitrogen deficient maize and wheat plants. J. Plant Physiology 158: 1423-1430. Lutze, J. L. and Gifford, R. M. (1998) Carbon accumulation, distribution and water use of Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth. Global Change Biology 4: 851-852. Maathuis, F. J. M. and Sanders, D. (1999) Plasma membrane transport in context- making sence out of complexity. Current Opinion in Plant Biology 2: 236-243. Makino, A., Sakashita, H., Hidema, J., Mae, T., Ojima, K., and Osmond, B. (1992) Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiology 100: 1737-1743. Makino, A. (1994) Biochemistry of C3-photosynthesis in high CO2. Journal of Plant Research 107: 79-84. Matzke, H. and Mengel, K. (1993) Importance of plasmalemma ATPase in the retention and exclusion of inorganic ions. Zeitschrift fur Pflanzenernahrung, Dungung und Bodenkunde 156: 515-519. Maxwell, K. and Johnson, G. N. (2000) Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659-668. McClure, P. R., Kochian, L. V., Spanswick, R. M., Shaff, J. E. (1990a) Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiology 93: 281-289. McClure, P. R., Kochian, L. V., Spanswick, R. M., Shaff, J. E. (1990b) Evidence for cotransport of nitrate and protons in maize roots. II. Measurement of NO3- and H+ fluxes with ion-selective microelectrodes. Plant Physiology 93: 290-294. McLean, E. O. (1982) Soil pH and lime requirement. In: Motheds of soil analysis. Page, A. L. et al. eds. Part 2. 2nd ed. Madison, Wisconsin: American Society of Agronomy 9: 199-223. Medlyn, B. E. (1996) Interactive effects of atmospheric carbon dioxide and leaf nitrogen concentration on canopy light use efficiency: a model analysis. Tree Physiology 16: 201-209. Meyer, C. and Stöhr (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. In: Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Foyer, C. H. and Noctor, G. eds. Kluwer Academic Publishers. Dordrecht. Boston, Mass. pp. 49-62. Michelet, B. and Boutry, M. (1995) The plasma membrane H+-ATPase-a highly regulated enzyme with multiple physiological functions. Plant Physiology 108: 1-6. Morgan, J. A., Skinner, R. H., and Hanson, J. D. (2001) Nitrogen and CO2 affect regrowth and biomass partitioning differently in Forages of three functional groups. Crop Science 41: 78-86. Morsomme, P. and Boutry, M. (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochimica et Biophysica Acta 1465: 1-16. Murray, M. B., Leith, I. D., Jarvis, P. G. (1996) The effect of long term CO2 enrichment on the growth, biomass partitioning and mineral nutrition of Sitka spruce (Picea sitchensis (Bong.) Carr.). Trees 10: 393-402. Murray, M. B., Smith, R. I., Friend, A., and Jarvis, P. G. (2000) Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis). Tree Physiology 20: 421-434. Nakano, H., Makino, A., and Mae, T. (1997) The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology 115: 191-198. Niinemets, Ü., Tenhuen, J. D., Canta, N. R., Chaves, M. M., Faria, T., Pereira, J. S., and Reynolds, J. F. (1999) Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. Global Change Biology 5: 455-470. Niklaus, P. A., Kandeler, E., Leadley, P. W., Schmid, B., Tscherko, D., and Körner, C. (2001) A link between plant diversity, elevated CO2 and soil nitrate. Oecologia 127: 540-548. Nissen, P. (1996) Uptake Mechanisms. In: Plant Roots-The Hidden Half. Waisel, Y., Eshel, A., and Kafkafi, U. eds. Marcel Dekker, Inc. New York. pp. 511-527. van Noordwijk, M., Martikainen, P., Bottner, P., Cuevas, E., Rouland, C., and Dhillion, S. S. (1998) Global change and root function. Global Change Biology 4: 759-772. Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R. (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell and Environment 22: 683-714. Owens, T. G. (1994) In vivo chlorophyll fluorescence as a probe of photosynthetic physiology. In: Plant Response to the Gaseous Environment-Molecular, Metabolic and Physiological Aspects. Alscher, R. G. and Wellburn, A. R. eds. Chapman and Hall, Cambridge University Press. Cambridge, London. pp. 195-217. Palmgren, M. G. (1991) Regulation of plant plasma membrane H+-ATPase activity. Physiologia Plantarum 83: 314-323. Palmgren, M. G. (1998) Proton gradients and plant growth: role of the plasma membrane H+-ATPase. Advances in Botanical Research 28: 1-70. PAM-2000 Instruction manual (2003) Protable Fluorometer PAM-2000 and Data Acquisition Software DA-2000. 2nd ed. Heinz Walz GmbH, Germany. Paul, M. J. and Foyer, C. H. (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52: 1383-1400. Peuke, A. D. and Tischner, R. (1990) Effects of variation in nitrogen nutrition on growth of poplar (Populus trichocarpa) clones. In: Plant Nutrition-Physiology and Applications. Van Beusichem, M. L. ed. Kluwer Academic Publishers. pp. 53-59. Pilbeam, D. J. and Kirkby, E. A. (1990) The physiology of nitrate uptake. In: Nitrogen in Higher Plants. Abrol, Y. P. ed. Taunton, Somerset: Research Studies press. pp.39-64. Portillo, F. (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochimica et Biophysica Acta 1469: 31-42. Pritchard, S. G., Rogers, H. H., Prior, S. A., and Peterson, C. M. (1999) Elevated CO2 and plant structure: a review. Global Change Biology 5: 807-837. Quaggiotti, S., Ruperti, B., Borsa, P., Destro, T., and Malagoli, M. (2003) Expression of a putative high-affinity NO3- transporter and of an H+-ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. Journal of Experimental Botany 54: 1023-1031. Read, J. J., Morgan, J. A., Chatterton, N. J., and Harruson, P. A. (1997) Gas exchange and carbonhydrate and nitrogen concentrations in leaves of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) at different carbon dioxide concentrations and temperatures. Annals of Botany 79: 197-206. Reich, P. B. and Walters, M. B. (1994) Photosynthesis-nitrogen relations in Amazonian tree species II. Variation in nitrogen vis-à-vis specific leaf area influences mass- and area-based expressions. Oecologia 97: 73-81. Rey, A., Barton, C. V. M., and Jarvis, P. G. (1997) Be
摘要: 
本研究旨在探討不同二氧化碳濃度(354.29±12.80 μL L-1, Ambient, A及719.65±28.70 μL L-1, Elevated, E)與不同氮養分濃度(112、224及448 ppm)處理對樟樹(Cinnamomum camphora) 苗木之形質生長、氣體交換、光捕捉能力、非結構性碳水化合物與氮養分於植體之分配、介質的酸鹼值變化與氮養分狀態,以及根部之原生質膜H+-ATP水解酵素在氮養分吸收所扮演之角色等的影響,為期8週。在整個試驗期間,高二氧化碳濃度對苗高淨生長與地際直徑淨生長具有持續且顯著的促進效果,而不同氮養分濃度處理間並無顯著差異。雖然於處理4週後,高二氧化碳濃度與較高氮養分濃度能夠提昇光合作用速率,但各項葉綠素螢光反應參數與葉綠素含量的結果已透露,高二氧化碳濃度對光合作用光反應具有負面影響,此反應會隨著氮養分濃度增加而減緩之。處理8週後,光合作用速率已逐漸適應於高二氧化碳濃度之環境,各項葉綠素螢光反應參數與葉綠素含量與大氣二氧化碳濃度處理者之間無顯著差異。由於碳有往地下部輸送的傾向,有助於地下部吸收氮養分,而原生質膜上H+-ATPase更能促進氮養分的吸收,尤其是NO3-,然其於地上部進行同化作用已有降低而於地下部進行同化作用則有增加的趨勢。由地下部之NO3-及NH4+含量、介質pH與NO3-及NH4+含量的結果推測,地下部吸收氮養分型態的偏好,有由NO3-轉為偏好吸收NH4+的傾向。氮養分供應適度與否,將對生長表現、生理作用、光合作用光反應、碳與氮於地上部與地下部的分配,以及氮養分的吸收等反應於二氧化碳濃度提昇而有正面的效應。

This study investigated the effects of different carbon dioxide concentrations (354.29±12.80 μL L-1, Ambient, A, or 719.65±28.70 μL L-1, Elevated, E) and different nitrogen concentrations (112, 224 or 448 ppm) on growth performances, gas exchange, ability of radiation capture, allocations of non-structural carbohydrates and nitrogen nutrients, situations of pH and nitrogen nutrients, and the role of plasma membrane H+-ATPase played on nitrogen uptake in the soil medium of Cinnamomum camphora seedlings for eight weeks. During entire experimental period, the net height growth and net ground diameter growth were continually and significantly enhanced by elevated carbon dioxide concentration, but have no obviously difference among nitrogen concentrations. Although photosynthetic rate was promoted by elevated carbon dioxide concentration and higher nitrogen concentration after four weeks, the results from chlorophyll fluorescence measurements and chlorophyll contents have demonstrated that the light reaction of photosynthesis has been negatively affected by elevated carbon dioxide concentration. This impact would be weak with nitrogen concentrations increased. After eight weeks, photosynthetic rate has gradually acclimated under elevated carbon dioxide condition. Chlorophyll fluorescence parameters and chlorophyll contents of elevated carbon dioxide treatment have no significantly different from those of ambient treatment. Because of it has a tendency to transport more carbon to the roots, and to improve nitrogen uptake. Plasma membrane H+-ATPase could accelerate nitrogen uptake, especially for nitrate uptake. But nitrate assimilation has a trend to decrease in the shoots and to increase in the roots under elevated carbon dioxide condition. According to the results from nitrate and ammonium contents of roots, pH value and nitrate and ammonium contents of soil medium, I may conjecture that the hobby for nitrogen forms to uptake has changed, from nitrate uptake changed to ammonium uptake. Nitrogen concentration supply adequately or not would have a positive effect on growth performances, physiology, the light reaction of photosynthesis, allocations of carbon and nitrogen between shoots and roots and nitrogen absorption to response carbon dioxide concentration enrichment.
URI: http://hdl.handle.net/11455/65904
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.