Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65934
標題: 鋁處理對平戶杜鵑及樟樹苗木的影響
Effects of aluminum treatments on Cinnamomum camphora and Rhododendrom mucronatum seedlings
作者: 林忠本
Lin, Jhong-ben
關鍵字: aluminum;鋁;root exudation;根分泌物
出版社: 森林學系所
引用: 張育森、宋馥華 (2000) 台灣地區平戶杜鵑之開花習性。中國園藝 46(1):1-10。 梁致遠、林鴻淇 (1998) 茶樹根部免除鋁毒害機制的研究。土壤與環境 1(2):115-123。 郭魁士 (1997) 土壤學,中國書局。 Alexander, H., I. Brunner, B. Frey, E. Frossard and J. Luster (2001) Root exudation, organic acid, and element distribution in roots of Norway spruce seedlings treated with aluminum in hydroponics. Journal of Plant Nutrtion and Soil Science 164:519-526. Alva, A. K., D. G. Edwards, C. J. Asher, and F. P. C. Blamey. (1986) Effect of phosphorus/aluminum molar ration and calium concentration on plant response tp aluminum toxicity. Soil Science Society America 50:133-137. Arne, S., T. D. Eldhuset and G. Wollebæk (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biology and Biochemistry 37: 259–269. Aveston, J. (1965) Hydrolysis of the aluminum ion: Ultra centrifugation and acidity measurements. Chemical Society 14:4438-4443. Cassandra, R. S., A. F. Patti, T. S. Clune and R. Jackson (2008) Organic amendments increase soil solution phosphate concentrations in an acid soil: a controlled environment study. Soil Science 173(4):267-276. Catherine, H. B., P. G. Schaberg, D. H. Dehayes and G. J. Hawley (2004) Accretion, partitioning and sequestration of calcium and aluminum in red spruce : implications for tree health. Tree Physiology 24:929-939. Chiang, K. Y. , Y. N. Wang, M. K. Wang and P. N. Chiang (2006) Low-molecular-weight organic acids and metal speciation in rhizosphere and bulk soils of a temperate rain forestin Chitou, Taiwan. Taiwan Joural For. Science 21(3):327-337. Cronan, C. S. and W. A. Reiners (1983) Canopy processing acidic precipitation by coniferous and deciduous forests in New England. Oecologia 59:216-223. de la Fuente, J. M., V. Ramirez-Rodriguez, J. L. Cabrera-Ponce and L. Herrera-Estrella (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566-1568. Delhaize, E. and P. R. Ryan (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107:315-321. Greenaway, F. T. (1986) Aluminum-27 NMR study of aluminum(III) interactions with hydroxy carboxylic acids. Inorganica Chimica Acta 116:L21-L23. Gunsé, B., Gunse´, B., Poschenrieder, C., Barcelo´ , J., 1997. Water transport properties of roots and root cortical cells in protonand Al-stressed maize varieties. Plant Physiology 113:595-602. Hek, H. D., R. J. Stol, and P. L. Bruyn (1977) Hydrolysis-precipitation studies of aluminum(III) solutions. 3. The role of the sulfate ion. Colloid Interface Science 64:72-89. Hoekenga, O. A., L. G. Maron, M. A. Piñeros, G. M. A. Cançado, J. Shaff, Y. Kobayashi, P. R. Ryan, B. Dong, E. Delhaize, T. Sasaki, H. Matsumoto, Y. Tamanoto, H. Koyama and L. Kochian (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103(25):9738-9743. Hong, S., X. Yan, M. Zhao, S. Zheng and X. Wang (2002) Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Enviromental and Experimental Botany 48:1-9. Huttunen, S. (1984) Interactions of Disease and Other Stress Factors with Atmospheric Pollution. In: Air Pollution and Plant Life. Ed. by Treshow, M. Chichester, UK: John Wiley and Sons 321–356. Jones, D. L. (1998) Organic acids in the rhizosphere-a critical review. Plant and Soil 205:25-44. Jones, D. L., P. G. Dennis, A. G. Owen and P. A. W. Van Hees (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil 248:31-41. Jorge, R. A., M. Menossi and P. Arruda (2001) Probing the role of calmodulin in Al toxicity in maize. Phytochemistry 58:415-422. Karlik, S. J., E. Tarien, G. A. Elgavish and G. L. Eichhorn (1982) Aluminum-27 nuclear magnetic resonance study of aluminum (III) interactions with carboxylate ligands. Inorganic Chemistry 22:525-529. Kopittke, P. M., N. W. Menzies and F. P. C. Blamey (2004) Rhizotoxicity of aluminate and polycationic aluminium at high pH. Plant and Soil 266:177-186. Konishi, S., S. Miyamoto and T. Taki (1985) Stimulatory effect of aluminum on tea plants grown under low and high phosphorus supply. Soil Science Plant Nutrition 31:361-368. Kwong, K. F. Ng Kee and P. M. Huang. (1979) The relative influence of low-molecular-weight, complexing organic acids on the hydrolysis and precipitation of aluminum. Soil Science 128:337-342. Li, X. F., J. F. Ma and H. Matsumoto (2000) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiology 123:1537-1543. López-Bucio, J., M. F. Nieto-Jacobo, V. Ramirez-Rodriguez and L. Herrera-Estrella (2000) Organic acid metabolism in plant: fro adaptive physiologu to transgenic varieties for cultivation in extreme soils. Plant Science 160:1-13. Ma, J. F., P. R. Ryan and E. Delhaize (2001) Aluminium tolerance in plants and the complexing role of organic acids. Plant Science 6 (6): 273-278 Ma, J. F., S. Hiradate and H. Matsumoto (1998) High aluminum resistance in buckwheat. Plant Physiology 117: 753–759. Ma, J. F., S. Taketa and Z. M. Yang (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology 122:687-694. Marschner H. (1989) Soil-root interface: biological and biochemical processes. Soil Science Society America 191-232. Matrin, J., R. C. Abaidoo, C. Nolte and W. J. Horst (2007) Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. Journal of Plant Physiology 164:442-451. Matsumoto H., E. Hirasawa, H. Torikai and E. Takahashi. (1976) Localization of aluminum in tea leaves. Plant Cell Physiology 17:627-631. Minocha, R. and S. Long (2004) Effects of aluminum on organic acid metabolism and secretion by red spruce cell suspension cultures and the reversal of Al effects on growth and polyamine metabolism by exogenous organic acids. Tree Physiology 24:55-64. Nguyen, N. T., K. Nakabayashi, J. Thompson and K. Fujita (2003) Role of exudation of organic acids and phosphate in aluminum tolerance of four tropical woody species. Tree Physiology 23:1041-1050. Nigam, R., S. Srivastava, S. Prakash and M. M. Srivastava (2001) Cadmium mobilization and plant availability – the impact of organic acids commonly exuded from roots. Plant and Soil 230:107-113. Nouchi, I. (1990) Effects of acid precipitation on agricultural crops and forest trees. J. Jpn. Soc. Air Pollution 25:295–312. Parker, D. R. and P. M. Bertsch (1992) Formation of the “Al13”tridecameric polycation under diverse synthesis conditions. Environment Science Technology 26(5):914-921. Pellet, D. M., L. A. Papernik and L. V. Kochian (1996) Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phos- phate and malate exudation. Plant Physiology 112:591–597. Rakesh, M. and S. Long (2004) Effects of aluminum on organic acid metabolism and secretion by red spruce cell suspension cultures and the reversal of Al effects on growth and polyamine metabolism by exogenous organic acids. Tree Physiology 24:55-64. Roser, P. T., C. Poschenrieder, B. Luppi and J. Barcelo (2005) Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Enviromental and Experimental Borany 54:231-238. Ryan, P. R., E. Delhaize and D. L. Jones (2001) Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology 52:527-560. Saarnio, S., L. Wittenmayer and W. Merbach (2004) Rhizospheric exudation of Eriophorum vaginatum L. – potential link to methanogenesis. Plant and Soil 267:343-355. Shen, R. and J. F. Ma (2001) Distribution and mobility of aluminum in an Al-accumlating plant Fagopyrum esculentum Moench. Jounal of Experiment Botany 52:1683-1687. Silva, R., R. F. Novais, G. N. Jham, N. F. Barros, F. O. Gebrim, F. N. Nunes, J. C. L. Neves and F. P. Leite (2004) Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiology 24:1267-1277. Smith, W. H. (1990) The Atmosphere and the Rhizosphere: Linkages with Potential Significance for Forest Tree Health. 188-230. In A. A. Lucier and S. G. Haines, eds. Mechanisms of Forest Response to Acidic Deposition. Edwards Brothers, Inc., Ann Arbor, Michigan. 245. Ström L., A. G. Owen, D. L. Godbold and D. L. Jones (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil biology and biochemistry 37:2046-2054. Thomas, B. K., D. R. Parker and R. W. Zobel (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporatin the root cortex, epidermis, and the external unstirred layer. Joumal of Experimental Botany 56:1853-1865. Ulla, A. J. and A.W. Patrick (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytology 146:557-567. Venturini-Soriano, M. and G. Berthon (2001) Aluminum speciation studies in biological fluids: Part 7. A quantitative investigation of aluminum(III)–malate complex equilibria and their potential implications for aluminum metabolism and toxicity. Journal of Inorganic Biochemistry 85:143–154 Violante, A. and P. M. Huang (1985) Influence of inorganic and organic liards on the formation of aluminum hydroxides and oxyhydroxides. Clays and Clay Minerals 33:181-192. Wang, P. and R. Zhou(2006)Determination of organic acid exuded from plant roots by high performance liquid chromatography. Chiese Journal of Chromatography 24:239-242. Wannaz, E. D., H. A. Carreras, C. A. Pérez and M. L. Pignata.(2006) Assessment of heavy mental accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina Science of the Total Environment 361:267-278. Watanabe, T. and M. Osaki (2002) Role of organic acids in aluminum and plant growth in Melastoma malabathricum. Tree Physiology 22:785-7 Watanabe, T. and M. Osaki (2002) Role of organic acids in aluminum and plant growth in Melastoma malabathricum. Tree Physiology 22:785-7 Yang, Z. M., H. Yang, J. Wang and Y. S. Wang (2004) Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. Plant Science 166:1589-1594. Yoshitake, H., K. Tanoi, H. Nishiyama and T. M. Nakanishi (2005) Rhizosphere pH profile of rice plant influenced by Al treatment. Soil Science Plant Nutrition 51(5):729-731. Zhang, W. H., P. R. Ryan and S. D. Tyerman (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiology. 125:1459-1472. Zhao, Z., J. F. Ma and K. Sato (2003) Differential Al resistance and citrate secretion in barly (Hordeum vulgare L.). Planta 217:794-800. Zheng, S. J., J. F. Ma and H. Matsumoto (1998) High aluminum resistance in buckwheat. Plant Physiology 117: 745-751.
摘要: 
本研究主要是探討鋁處理對平戶杜鵑(Rhododendron mucronatum)和樟樹(Cinnamomum camphora)苗木根分泌物和根萃取液的影響。將苗木移植到裝珍珠石之盆栽進行試驗,以蒸餾水、0.5 mM AlCl3和1 mM AlCl3進行澆灌,模擬野外土壤酸化後,重金屬被釋放出來的環境。結果顯示,根淨生長量平戶杜鵑在添加1mM鋁處理有增加的趨勢;樟樹則是蒸餾水組會高於添加鋁處理。平戶杜鵑根萃取液主要以草酸、檸檬酸及磷酸為主。樟樹則是只有草酸和磷酸。平戶杜鵑的根部植體鋁鈣比雖大於1,但仍沒根生長衰退的徵兆,可能平戶杜鵑屬於鋁累積型的植物;樟樹的根部植體鋁鈣比雖小於1且淨生長量能夠不斷增加的原因,可能是因為樟樹根部含有多量的草酸,能夠分泌與鋁螯合。本試驗中平戶杜鵑和樟樹根分泌物皆有草酸和磷酸,其中平戶杜鵑根分泌磷酸,在試驗第一天起添加0.5 mM和1 mM鋁處理與蒸餾水組就有顯著差異,其值分別為蒸餾水的10 %和12 %;而樟樹根分泌磷酸則是在第三天起添加0.5 mM和1 mM鋁處理與蒸餾水組才有顯著減少,為蒸餾水的8%。因此在面對鋁毒害時,推測兩種植物根部除了分泌草酸之外,相較於樟樹,平戶杜鵑能夠較早分泌磷酸來和鋁螯合,藉此降低鋁對根部的傷害。

The objective of this study was to examine the effects of acid rain on root exudation and extraction of Rhododendron mucronatum and Cinnamomum camphora. We planted with seedlings in the pots with perlites and added to pour distilled water, 0.5 mM and 1 mM AlCl3. It was to simulate the heavy metal released when soil acidification. Rhododendron mucronatum and Cinnamomum camphora seedlings were choosed to compare what the response when they grew under different aluminum solution treatments. The net root growth of Rhododendron mucronatum increased in 1 mM AlCl3, but Cinnamomum camphora didn't. Rhododendron mucronatum released oxalic acid, citric acid and phosphate in the extractions. But, Cinnamomum camphora had only oxalic acid and phosphate in the extractions. Although the Al:Ca ratio in Rhododendron mucronatum was more than 1, but it still grew well. Rhododendron mucronatum may be Al-accumulattion plant. Both Rhododendron mucronatum and Cinnamomum camphora exudated oxalic acid and phosphate. Exudation of phosphate Rhododendron mucronatum's root significantly reduced in 0.5 mM and 1 mM AlCl3 in the first day (10% and 12%). Exudation of phosphate in Cinnamomum camphora's significantly reduced in 0.5 mM and 1 mM AlCl3 in the third day (8%). According to the concentration of aluminium in the solution, we concluded that Cinnamomum camphora and Rhododendron mucronatum exudated oxalic acid and phosphate to chelate aluminium by complex anion.
URI: http://hdl.handle.net/11455/65934
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.