Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65939
標題: 不同竹種竹炭與竹醋液之製造及 碳材於水質改良之應用
Manufacture of Bamboo Charcoals and Vinegars from Different Bamboos and Carbonaceous Materials Applied on the Improvement of Water Qualities
作者: 周坤池
Zhou, Kun-Chi
關鍵字: Bamboo charcoal;竹炭;Bamboo vinegar;Activated carbon;Water quality;竹醋液;活性碳;水質
出版社: 森林學系所
引用: 王松永、洪崇彬、王俊凱、汪偉杰、賴華雄 (2004) 竹材之活化製程與性能檢測。工業材料205:86-92。 王俊凱 (2004) 麻竹與桂竹炭化物之碳化條件對其特性及吸附效能之影響。國立台灣大學森林學研究所碩士論文。第1-109頁。 行政院環境保護署 (2008) 飲用水水質標準。第1-6頁。 江漢全 著 (2004) 水質分析。 三民書局 台北。第63、91、99、100頁。 何姣青、曹賢坤、巫中安、沈倩如 (2004) 竹醋液成分分析與抗菌應用研究。工業材料205:93-96。 呂錦明 (2001) 竹林之培育及經營管理。行政院農業委員會林業試驗所。第71頁。 林兼民 (2001) 炭系材料吸附性能之探討。紡織中心期刊 11(3):209-211。 林翰謙、夏滄琪、邱佩君、阮幼梅、謝東霖、鄭世強 (2005) 應用竹醋液處理評估竹材防黴之研究。行政院國家科學委員會提升產業技術及人才培育研究計畫。pp.2-14。 周佳慧 (2001) 活性碳孔洞結構對不同氣體有機物吸附之影響。國立成功大學化學工程系研究所碩士論文。第1-28頁。 吳萬全 (2001) 活性炭。臺灣鑛業53(3):37-51。 洪崇彬 (2002) 木質廢棄物製造之碳化材的基本性質與利用。國立台灣大學森林學研究所博士論文。第26頁。 洪崇彬 (2004) 木、竹炭在生活上的應用。林業研究專訊 11 (3):18-21。 洪崇彬、許德仁、王松永、蕭英倫、柯淳涵 (2004) 碳化條件對竹炭室內空氣淨化效能之探討,林產工業 23(3):183-197。 洪崑煌 (1981) 土壤化學。國立編譯館。第91頁。 徐崇仁 (1997) 自動化超集合約循環水養鰻專輯。台灣省水產試驗所出版,基隆。 胡盈翔 (2004) 孟宗竹炭燒製實務與產品性質評估。國立屏東科技大學木材工業系研究所碩士論文。第6和60-65頁。 夏滄淇、黃國雄、王瀛生、劉瓊霦 (2003) 談竹炭性質之檢測與分析。林業研究專訊10(3):38-45。 郭嘉雯 (2005) 竹醋液基本性質及其抗植物病原細菌之探討。國立中興大學碩士論文。第10頁。 陳弘彬 (2003) 孟宗竹炭與活性炭之研製。國立屏東科技大學森林系研究所碩士論文。第44頁。 陳莉鵑、盧崑宗、劉正字(2007)竹醋液對青梗白菜生長之促進作用。台灣林業科學 22(2):135-43。 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。第309-325頁。 黃汝銘 (2001) 活性碳纖維製程暨其吸附性能之研究。國立台灣科技大學纖維極高分子工程系研究所博士論文。第1-21頁。 黃定加 (1987) 物理化學。高立出版。第425-431頁。 陳靜修、盧崑宗、黃莉雯、劉正字、顏江河 (2006) 漂流木製造木炭及木醋液之研發與農林作物之栽培利用(Ⅰ)漂流木製造木炭及木醋液。林業研究季刊28(4):87-98。 黃登福 (2006) 竹炭在農漁牧應用之先驅性探討。行政院農業委員會林務局委託研究計畫講義。行政院農委會林務局。 黃龍泰 (2002) 以稻殼和花生殼製備高表面積之活性碳與其應用。國立台灣科技大學化學工程系研究所碩士論文第1-89頁。 黃耀富 (2001) 竹炭性質及其研製與應用。開發高附加價值之精緻竹材及其應用建設觀摩研討會。第21頁。 黃耀富 (2003) 竹醋液之採集與應用。高品質竹炭製造實務研習會。第1-21頁。 葉桂足 陳清松 賴壽蓮 (2005) 竹炭對水溶液中苯酚的吸附性能研究。林產化學與工業 25:139-142。 農委會 (2006) CAS優良林產品標誌一般用途木炭認定評審標準。 楊琇塋 (2003) 竹炭應用於景觀水淨化處理之研究。竹產業轉型及振興計畫成果發表會講義。工業技術研究院-工業材料研究所。 蔡文田、張慶源 (1993) 活性炭及其在空氣污染防治之應用。環境工程會刊 4(2):65-84。 蔣本基 (1996) 活性碳物理化學特性對VOCs吸附之影響。工業污染防治58:144-162。 劉正字、陳文褀、汪偉杰、盧崑宗、白鷹傑、巫崇生、王翼倫 (2003) 竹炭生產技術研習交流報告。行政員及所屬機關出國報告。 劉明翰 (2001) 粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立。國立中山大學環境工程研究所碩士論文。第 3-50頁。 劉曾旭 (1998) 活性碳製造技術及應用。產業調查與技術127:84-97。 潘泰安 (2004) 以農業廢棄物為原料合成微孔吸附劑之資源化研究。國立高雄第一科技大學環境與安全衛生工程所碩士論文。第 3-43頁。 鄭森雄 (1992) 水產概論(上冊)。華香園出版社。第182、191頁。 鄭敬賢 (2004) 超音波音場對活性碳液相吸附與脫附之影響。私立元智大學化學工程學系碩士論文。第1-23頁。 盧崑宗、郭嘉雯、劉正字(2007)不同炭化溫度範圍收集竹醋液之基本性質及其抗植物病原細菌活性。中華林學季刊40(1):97-112。 謝建德 (1998) 活性碳孔隙結構與製備條件對液相吸附的影響。私立中原大學化學工程學系研究所碩士論文。第1-88頁。 太田 明、張 利軍 (1994) 木酢液分画物による食用きのこの菌糸生長と子実体生産の促進。木材學會誌40(4):429-433。 內村悅三、谷田貝光克、細川健次 (1999) 竹炭、竹酢液の利用事典。創森社。東京。pp.9-1。 內村悅三、谷田貝光克、細川健次 (2002) 竹炭、竹酢液の利用事典。創森社。第133-136頁。 石原茂久 (1996) 木質系炭素材料素材開發の新しい展開。木材學會誌 42 (8):717-723。 石原茂久 (2001) 木材かち木炭ちへ。木材工業56 (9):406-410。 石原茂久 (2002) 新しい機能性炭素材料素材としての木炭利用(I)。木材工業57 (1):2-7。 谷田貝光克 雲林院源治 (1988) 炭化副產物にする研究(第3報) 木酢液の成分。木材學會誌 34(2):184-188。 谷田貝光克、伊藤 蘭、大平辰郎、大庭喜八郎 (1995) 木炭の水質淨化效果。木材學會誌 41(4):425-432。 谷田貝光克 (1997) 碳化材の特性とその利用。木材工業 52(10):472-477。 谷田貝光克 (2006) 環境にやさしい木•竹炭と木•竹醋液の利用。2006台日「炭化物利用於環境保全」研討會,日本(社)全國燃料協會、社團法人台灣生態炭產業發展協會主辦。 芝本武夫、栗山 旭 (1950) 木材炭化。朝倉書店發行。第3-33頁。 松永一彥、新村孝善、西和枝、國生徹郎 (1998) 竹炭の電気的物性と電磁波シールド效果に関する研究。鹿児島県工業技術センタ一研究報告 12:47-52。 松永一彥、新村孝善、西和枝、神野好孝、國生撤郎 (1999) モウソウチクの 炭化生成物と竹酢液の物性について。鹿児島県工業技術センタ一研究報告 (13):23-30。 城代 進、矢野省一、上原徹 (1989) 木酢液の成分とその燻香。木材學會誌6(35):555-563。 福地 哲郎、山內 博利、高橋 克嘉、小玉 義和 (2001) 生物竹炭を用いた簡易生活排水處理裝置の開發。宮崎縣工業技術センタ一‧宮崎縣食品開發センタ一研究報告 (46):21-23。 藤原 敏、嶋一徹、千葉喬三 (2003) 竹炭の基本的特性と調湿能。木材学会誌49(5):333-341。 Abe, I.,,T. Fukuhara, J. Maruyama, H. Tatsumoto and S. Iwasaki (2001) Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon 39:1069-1073. Ahmendna, M., W.E. Marshall and R.M. Rao (2000) Production of granular activated carbon from select and agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource technology 71:113-123. Ahsan, S., S. Kaneco, K. Ohta, T. Mizuon and K. Kani (2001) Use of some natural and waste materials for waste water treatment. Wat. Res. 35(15):3738-3742. Asada, T., S. Ishihara., T. Yamane., A. Toba., A. Yamada, and K. Oikawa (2002) Science of bamboo charcoal:study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J. Health Sci. 48(6):473-479. Boehm, H. P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759-769. Brunauer, S., P. H. Emmett and E. Teller (1938) Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc. 40:1361-1403. Caturla, F., M. Molina-Sabio, and F. Rodríguez-Reinoso (1991) Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29:7-13. Chiang, Y. C., P. C. Chiang and C. P. Huang (2001) Effect of pore structure and temperature on VOC adsorption on activated carbon. Carbon 38:1089-1097. Corapcioglu, M. O. and C. P. Huang (1987) The surface acidity and characterization of some commercial activated carbon. Carbon 25:569-578. Demirbaş, A.(2000) Mechanisms of liquefaction and pyrolysis reaction of biomass. Energy Convers. Manage. 41:633-646. Devi, R. and R. P. Dahiya (2008) COD and BOD removal from domestic wastewater generated in decentralized sectors. Bioresource Technol. 99:334-349. Dong, D., Y.M. Nelson, L. W. Lion, M.L. Shuler and W.C. Ghiorse (2000) Adorption of Pb and Cd onto metal oxides and organic material in natural surface coationgs as determined by selective extractions:new evidence for the importance of Mn and Fe oxides. Water Research 34:427-436. Freundlich, H. (1907) Ueber die Adsorption in Loesungen. Z. physic. Chem. 57:385-470. Gregg, G. S., and K. S. W. Sing (1982) Adsorption, surface area and porosity. 2nd Edition. Harcourt Brace Jovanovich, London, England. Guo, J. and A. C. Lua (1998) Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. J. Anal. Appl. Pyrolysis 46(2): 113-125. Horne, P. A. and T. W. Paul (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 75(9):1051-1059. Jonas, L. A. (1978) Reaction steps in gas sorption by impregnated carbon. Carbon 16:115-119. Küçük, M. M. and A. Demirbaş (1997) Biomass conversion processes. Energy Convers. Mgmi. 38(2):151-165. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc. 40:1361-1403. Lua, A. C. and J. Guo (2000) Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal. Carbon 38(7):1089-1097. Macias-Garcia, A., M.J. Bernalte Garcia, M.A. Diaz-Diez, and A. H. Jimenez (2004) Preparation of active carbons from a commercial holm-oak charcoal : study of micro-and meso-porosity. Wood Science Technology 37:385-394. Manju, G.N., K. A. Krishnan, V.P. Vinod and T.S. Anirudhan (2002) An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (Ⅲ) oxide, Journal of Hazardous Materials B91:221-238. Mizuta, K., T. Matumoto, Y. Hatate, K. Nishihara and T. Nakanishi (2004) Removal of nitrate-nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technol. 95:255-257. Muńoz-guillena, M. J., M. J. Ⅲàn-Gómez, M. J. Marín-Martínez, A. Linares-Solano and C. Salinas-Martinez de Lecea (1992) Activated carbon from spanish coal. 1.two-stage CO2 activation. Energy Fuels 6:9-15. Mu, J., T. Uehara and T. Furuno (2003) Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants. J. Wood Sci. 49:262-279. Nishimiya, K., T. Hata, Y. Imamura and S. Ishihara (1998) Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. J. Wood Sci. 44: 56-61. Pastor-Villegas, J. and C. J. Durán-Valle (2002) Pore structure of activation at different temperatures from extracted rockrose. Carbon 40(3):397-402. Pastor-Villegas, J., J. F. Pastor-Valle, J. M. M. Rodríguez and M. G. García (2006) Study of commercial wood charcoals for the preparation of carbon adsorbents. J. Anal. Appl. Pyrolysis 76:103-108. Pendyal, B. M.M. Johns, W.E. Marshall, M. Ahmendna, and R.M. Rao (1999) The effect of binders and agricultural by-products on physical and chemical properties of granular activated carbons. Pimenta, A. S., B. R. Vital, J. M. Bayona and R. Alzaga (1998) Characterization of polycyclic aromatic hydrocarbons in liquid products from pyrolysis of Eucalyptus grandis by supercritical fluid extraction and GC/MS determination. Fuel. 77(11):1133-1139. Pulido, L. L., T. Hata, Y. Imamura, S. Ishiara and T. Kajimoto (1998) Removal of mercury and other metals by carbonized wood powder from aqueous solutions of their salts. J. Wood Sci. 44:237-243. Pulido-Novicio, L., T. Hata, Y. Kurimoto, S. Ishihara and Y. Imamura (2001) Adsorption capacities and related characteristics of wood charcoals carbonlized using a one-step or two-step process. J. Wood Sci. 47:48-57. Rao, T. R. and A. Sharma (1998) Pyrolysis rates of biomass materials. Energy 23(11):973-978. Rodríguez-Reinoso, F. (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159-175. Ruthven, D. M. (1984) Principles of adsorption and adsorption process. John Wiley & Sons, New York. Shawwa, A. R., D. W. Smith and D. C. Sego (2001) Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Wat. Res. 35(3):745-749. Sing, K. S. W. (1994) Physisorption of gases by carbon blacks. Carbon 32:1311-1317. Sulaiman, O., R. J. Murphy, R. Hashim and C.S. Gritsch (2005) The inhibition of microbial growth by bamboo vinegar. J. Bamboo Rattan 4(1):71-80. Volesky, B. (2001) Biosorption:Application aspects-Process simulation tools. In: Ciminelli VST &Garcia O Jr (Eds) Biolydrometallurgy:Fundamentals, Technology and Sustainable Development, Part B. p.69-80. Wigmans, T. (1989) Industrial aspects of production and use of activated carbons. Carbon 27:13-15. Williams, P. T. and S. Besler (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew. Energy 7(3):233-250. Yatagai, M., M. Nishimoto and K. Hori (2002) Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci. 48:338-342. Yun, C. H., Y. H. Park and C. R. Park (2001) Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon 39:559-567.
摘要: 
本研究是將國產六大竹種包括桂竹、麻竹、綠竹、莿竹、孟宗竹及長枝竹,以機械窯在升溫速率0.42℃/min下,升溫至600℃,並持溫1 hr將竹材炭化,探討竹炭與竹醋液基本性質。試驗結果得知,六種竹炭之孔隙度以長枝竹最低僅67.10%,莿竹孔隙度最高達86.71%;所有竹炭均呈鹼性,以莿竹鹼性最高,pH值達9.50,而麻竹pH值較低為7.04;以麻竹之藍牟爾比表面積最高為496.9 m2/g,而長枝竹最低僅179.1 m2/g。六種竹醋液有機成分均以酸性物質含量最多,酚類物質最少,中性物質次之;酸性物質均以醋酸與丙酸為主;酚類物質主要為2-甲氧基酚、酚及2,6-二甲氧基酚;中性物質主要以糠醛及3-糠醛、四氫-2-(甲氧基甲基)-呋喃、糠醇等之呋喃類物質為主。整體而言,六種竹炭之酸鹼值、孔隙度、比表面積等基本性質仍有差異,使用時宜適材適所,而竹醋液之主要酸性物質、酚類物質及中性物質,成分相近可合併使用。
將孟宗竹在升溫速率0.42℃/min分別炭化至500、700及900℃,並持溫1 hr,共得3種竹炭,再將500℃炭化之竹炭依不同活化時間(30、60及90 min)及不同活化溫度(700、900及1000℃)製成各種活性碳,除比較各種碳材之基本性質,並分析其自來水及地下水之水質處理效果;試驗結果顯示,以孟宗竹炭或竹活性碳處理均可使水質具鹼性,並可溶入高濃度鉀離子,並可使水分子團更細緻化,以900℃以上活化之竹活性碳才可將水中鈣及鎂離子去除,使硬水或中水變成軟水,竹活性碳對水質較差之地下水的改善效果優於水質較佳之自來水,整體而言,以炭化溫度500℃竹炭且在900℃活化30 min、碳量20 g、水量300 mL浸漬10 min之竹活性碳對水質改善效果最佳,且可重複使用10循環左右。
又將麻竹在升溫速率0.42℃/min下升溫至600℃製成麻竹炭及在900℃下分別活化30、60及90 min製成活性碳,除分析碳材基本性質並應用於觀賞水族箱水質改善之效果;試驗結果發現,養殖水質之朱文錦活存率以900℃活化60 min活性碳最高可達67%,而市售活性碳僅50%,但依鄧肯氏分析結果,各種碳材及空白組間均無顯著差異;魚體重量增加率以炭化600℃之竹炭及活化60 min之活性碳兩者增加最多,分別為22%及20%。但整體而言,以麻竹碳材處理養殖水質,並無顯著特別的改善效果。

In this study, the fundamental properties of bamboo charcoals and vinegars, made from domestic six kinds of bamboo species including makino bamboo, ma bamboo, green bamboo, thorny bamboo, moso bamboo, and long-branch bamboo, using a laboratory-scale steel kiln at a heating rate of charcoalization of 0.42℃/min for a temperature of 600℃ and holding 1 hr, were examined. The results indicated that among the bamboo charcoals, the thorny bamboo charcoal had the highest porosity of 86.71% and the long-branch bamboo had the lowest one of 67.10%. All bamboo charcoals exhibited alkalinity; the thorny bamboo showed the highest pH of 9.50, and the ma bamboo had the lowest one of 7.04. Moso bamboo charcoal had the highest Langmuir surface area of 496.9 m2/g, and the long-branch bamboo had the lowest one of 179.1%. The major organic compositions of the six kind bamboo vinegars were acidic components, followed by neutral components and phenolic components. The acetic acid and propanoic acid of the acidic components, 2-methoxy-phenol, phenol, and 2,6-dimethoxy-phenol of phenolic components, and 2-furancarboxaldehyde, 3-furaldehyde, tetrahydro-2-(methoxymethyl)-furan, and 2-furanmethanol of neutral components were the main compounds of each fraction, respectively. Generally speaking, the fundamental properties of charcoals such as pH value, porosity, and surface area have several differences between the six kind bamboo charcoals, therefore, the bamboo charcoal must be adapted to its special utilization. However, these bamboo vinegars have similar major acidic components, neutral components, and phenolic components, it is suggested that the bamboo vinegars could be combined with each other for utilization.
Three kinds of moso bamboo charcoals were obtained at a heating rate of charcoalization of 0.42℃/min for a temperature of 500﹐700﹐and 900℃﹐respectively﹐and holding time of 1 hr. The activated carbons made from moso bamboo charcoal of 500℃ with different activation times (30﹐60﹐and 90 min) and different activation temperatures(700﹐900﹐and 1000℃), respectively. The fundamental properties of the carbonaceous material and the improved efficiency of tap and ground drinking water by treated with the moso bamboo charcoal and activated carbon were examined. The results showed that the drinking water possessed more alkalinity, more concentration K+ were soluble in water, and smaller water clusters were obtained after moso bamboo charcoal or bamboo activated carbon treatments. The Ca2+ and Mg2+ could be removed only by treated with activated carbon with activation temperature over 900℃, i.e. hard water or moderately hard water would be become to a soft water. Furthermore, the improved efficiency of bamboo activated carbon treatments for poor quality of ground water was better than of that the superior quality of tap water. It is concluded that the activated carbon prepared from 500℃ bamboo charcoal and activated at 900℃ for 30 min and the dosage of 20 g dipping in 300 mL water for 10 min, had the best improved efficiency of water quality. In addition, the efficiency of the activated carbon could be repeated used for about 10 cycles.
The ma bamboo charcoal was obtained by a heating rate of charcoalization at 0.42℃/min at 600℃ and holding 1 hr and three kinds of activated carbons were manufactured by activated ma bamboo charcoal at 900℃ for 30, 60 and 90 min, respectively. The fundamental properties of the carbonaceous materials and the improved efficiency of cultured water after treated with the ma bamboo charcoal and activated carbon were examined. The results indicated that the survival percentage of Carassius auratus had the highest of 67% by the activated carbon prepared at 900℃ for 60 min treatment and the commercial activated carbon treatment had the lowest one of 50%. However, according to Duncan's multiple range test, the survival percentage of Carassius auratus had no significant difference among the carbonaceous materials. The 600℃ bamboo charcoal and activated carbon with activation time of 60 min had the highest increased in fish body weight of 22% and 20%, respectively. Generally speaking, the cultured water quality had no significant improvement after the ma bamboo charcoal and activated carbon treatment.
URI: http://hdl.handle.net/11455/65939
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.