Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65945
標題: 台灣中部北東眼山天然闊葉林土壤呼吸量之評估
Estimation of soil respiration of natural broad-leaved forest at Peitungyen Mt. in central Taiwan
作者: 宋芳儒
Song, Fang-Ru
關鍵字: Peitungyen Mt;北東眼山;soil respiration;土壤呼吸
出版社: 森林學系所
引用: 柒、參考文獻 王光軍、田大倫、閆文德、朱凡、項文化、梁小翠 (2009) 改變凋落物輸入對杉木人工林土壤呼吸的短期影響。植物生態學報 33(4): 739-747。 朱宏、趙成義、李君、李玉杰、王鋒 (2006) 乾旱區荒漠林地土壤呼吸及其影響因素分析。干旱區地理 29(6): 856-860。 李宏明 (2002) 台灣森林土壤CO2之釋放通量及其影響因子。國立台灣大學農業化學研究所碩士論文。 李振洲、葉學文、譚鎮中 (2003) 關刀系森林生態系土壤二氧化碳釋放來源之探討。土壤與環境 6(3): 145-152。 林信良 (1994) 土壤微生物生質量與呼吸量測定方法之探討與應用。國立中興大學土壤學研究所碩士論文。 呂淑瑋 (2010) 不同海拔天然闊葉林林地養分聚積及枯落物養分的輸入。國立中興大學森林學研究所碩士論文。 易志剛、蟻偉民 (2003) 森林生態系統土壤呼吸研究進展。生態環境 12(3): 361-365。 周海霞、張彥東、孫海龍、吳世義 (2007) 東北溫帶次生林與落葉松人工林的土壤呼吸。應用生態學報 18(12): 2668-2674。 侯智雄 (2008) 北東眼山溫帶常綠闊葉林木本植物社會11年期動態。靜宜大學生態學系碩士論文。 施政、汪家社、何容、方燕鴻、徐自坤、權偉、張增信、阮宏華 (2008) 武夷山不同海拔土壤呼吸及其主要調控因子。生態學雜誌 27(4): 563-568。 郝艷如、勞秀榮 (2002) 美國有關灌溉對根系即土壤呼吸影響之研究。水土保持科技情報 34(2): 15-17。 張怡佩 (2009) 惠蓀林場天然闊葉林與杉木林土壤呼吸之季節變化。國立中興大學森林學研究所碩士論文。 張增信、施政、何容、王國兵、唐燕飛、阮宏華 (2010) 北亞熱帶次生櫟林、和人工松林土壤呼吸日變化。南京林業大學學報 34(1):19-23。 張憲權、王文杰、祖元剛、張萬里 (2005) 東北地區幾種不同林分土壤呼吸的差異性。東北林業大學學報 33(2):46-73。 陳全勝、李凌浩、韓興國、簡志丹 (2003) 水分對土壤呼吸的影響及機理。生態學報 23(1): 972-978。 陳人豪 (2007) 疏伐對中台灣相思樹林與油桐林土壤呼吸之影響。國立中興大學森林學研究所碩士論文。 曾桂香 (2006) 棲蘭山區台灣扁柏森林土壤呼吸之探討。國立東華大學自然資源管理研究所碩士論文。 曾怡蓉 (2007) 柳杉人工林林地土壤呼動態變化。國立屏東科技大學森林系碩士論文。 黃承才、葛瀅、常傑、盧蓉、徐青山 (1999) 中亞熱帶東部三種主要木本群落土壤呼吸的研究。生態學報 19(3): 324-328。 游偉青 (2006) 疏伐對惠蓀林場山木人工林土壤呼吸之影響。國中中興大學森林學研究所碩士論文。 楊玉盛、陳光水、董彬、王小國、謝錦升、李燄、盧豪良 (2004) 格氏栲天然林和人工林土壤呼吸對乾濕交替的響應。生態學報 24(5): 953-958。 嚴俊霞、秦作棟、張義輝、李洪建 (2009) 土壤溫度和水分對油松林土壤呼吸的影響。生態學報 29(12): 6366-6376。 Anderson, J. P. E. (1982) Soil respiration In A. L. Page et al. (ed.) Methods of Soil Analysis. Part 2.2nd ed. Agron.Monogr. 9. ASA and SSSA, Madison, WI. P.831-871. Anderson, S. and S. Nilsson (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a more humus. Soil Biology and Biochemistry 33: 1181-1191. Bailey, V. L., J. L. Smith and H. Bloton Jr. (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry 34: 997-1007. Baath, E. and K. Arnebrant (1994) Growth rate and response of bacterial communitiesto pH in limed and ash reated forest soils. Soil Biology and Biochemistry 26: 995-1001. Bekku, Y., H. Koizumi, T. Nakadai and H. Ikwaki (1995) Measurement of soil respiration using closed chamber method: and IRGA technique. Ecological Research 10: 369-373. Bekku, Y. S., T. Nakatsubo, A. Kume, M. Adachi and H. Koizumi (2003) Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Applied Soil Ecology 22: 205-210. Bowden, R. D., E. Davidson, K. Savage, C. Arabia and P. Steudler (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soil at the Harvard Forest. Forest Ecology and Management 196: 43-56. Buchmann, N. (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32: 1625-1635. Davidson, E. A., E. Belk and R. D. Boone (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217-227. Davidson, E. A., L. V. Verchot, J. H. Cattanio, I. L. Ackerman and J. E. M. Carvalho (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48: 53-69. Ellis, S., M. T. Howe, K. W. T. Goulding, M. A. Mugglestone and L. Dendooven (1998) Carbon and nitrogen dynamics in a grassland soil with varying pH: Effect of pH on the denitrification potential and dynamics of the reduction enzymes. Soil Biology and Biochemistry 30: 359-367. Fierer, N., A. S. Allen, J. P. Schimel and P. A. Holden (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biology 9: 1322-1332. Flanagan, L. B. and B. G. Johnson (2005) Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology 130: 237-253. Freijer, J. I. and W. Bouten (1991) A comparison of field methods for measuring soil carbon dioxide evolution: Experiments and simulation. Plant and soil 135: 133-142. Gee, G. W. and J. W. Bauder (1986) Particle-size Analysis. In: A. L. Page et al (eds.) Methods of Soil Analysis. Part 1. 2nd ed. Agronomy 9: 383-411. Goulden, M. L., S. C. Wofsy, J. W. Harden, S. E. Trumbore, P. M. Crill, S.T. Gower, T. Fries, B. C. Daube, S. M. Fan, D. J. Stton, A. Bazzaz and J. W. Munger (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279: 214-217. Han, G., G. Zhou, Z. Xu, Y. Yang, J. Liu and K. Shi (2007) Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant Soil 291: 15-26. Hogberg M. N., E. Baath, A. Nordgren, K. Arnebrant and P. Hogberg (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs – Ahypothesis based on field observations in boreal forest. New Phytologist 160: 225-238. Hojjati, S. M. and N. P. Lamersdorf (2010) Effect of canopy composition on soil CO2 emission in a mixed spruce-beech forest at Solling, Central Germany. Journal of Forestry Research 21(4): 461-464. Huang, C. C., Y. Ge, J. Chang, R. Lu and Q. S. Xu (1999) Studies on the soil respiration of three woody plant communities in the East Mid-subtrpoical Zone, China. Acta Ecologica Sinica 19(3): 324-328. Jensen L. S., T. Mueller, K. R. Tate, D. J. Ross, J. Magid and N. E. Nielsen (1996) Soil surface CO2 flux as index of soil respiration in situ: a comparison of two chamber methods. Soil Biology and Biochemistry 28: 1297-1306. Keith, H., K. L. Jacobsen and R. J. Raison (1997) Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190: 127-141. Kieft, T. L., E. Soroker and M. K. Firestone (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry 19(2): 119-126. Kosugi, Y., T. Mitani, M. Itoh, S. Noguchi, M. Tani, N. Matsuo, S. Takanashi, S. Ohkubo and A. R. Nik (2007) Spatial and temporal variation in soil respiration in a southeast Asian tropical rainforest. Agricultural and Forest Meteorology 147: 35-47. Law, B. E., F. M. Kelliher, D. D. Baldocchi, P. M. Anthoni, J. Irvine, D. Moore and S. Van Tuy (2001) Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drouht. Agricultural and Forest Meteorology 110: 27-43. Lee, M. S., K. Nakane, T. Nakatsoubo, W. H. Mo and H. Koizumi (2002) Effects of rain fall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research 17: 401-409. Lee, K. H. and S. Jose (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management 185: 263-273. Lee, M. S., K. Nakane, T. Nakatsubo and H. Koizumi (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil 255: 311-318. Lee, M. S., K. Nakane, T. Nakatsubo and H. Koizumi (2005) The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest. Agricultural and Forest Meteorology 134: 95-101. Liu, Q., N. T. Edwards, W. M. Post, L. Gu, J. Ledford and S. Lenhart (2006) Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology 12(11): 2136-2145. Lundegardh, M. (1927) Carbon dioxide evolution of soil and crop growth. Soil Science 23: 417-453. Luo, Y. and X. Zhou (2006) Soil respiration and the environment. Academic Press, USA. pp92. MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report. MM-X-78. Matthias, A. D., A. M. Blackmer and J. M. Bremner (1980) A simple chamber technique for field measurement of emission of nitrous oxide from soils. Environmental Quality 9:251-256. McLean, E. O. (1982) Soil pH and lime requirement. In: A. L. Page et al (eds.) Methods of Soil Analysis. Part 2. 2nd ed. Agronomy 9: 199-223. Moreno, G. B., J. Rousk and E. Baath (2011) Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments. Soil Biology and Biochemistry 43(5): 1023-1033. Nadelhoffer, K. J., R. D. Boone, R. D. Bowden, J. D. Canary, J. Kaye, P. Micks, J. A. Ricca, A. Aitkenhead, K. Lajtha and W. H. McDowell (2004) The DIRT experiment: litter and root influences on forest soil organic matter stocks and function. New Haven 73: 300–315. Nakadai, T., H. Koizumi, Y. Usami, M. Satoh and T. Oikawa (1993) Examination of the methods for measuring soil respiration in cultivated land: Effect of carbon dioxide concentration on soil respiration. Ecology Research 8:65-71. Nakane, K., M. Yamamoto and H. Tsubota (1983) Estimation of root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology 33: 397-498. Oechel, W. C., G. L. Vourlitis and S. J. Hastings (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406: 978-981. Orchard, V. A. and F. J. Cook (1983) Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry 15(4): 447-453. Qi, Y. and M. Xu (2001) Separating the effects of moisyure and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains. Plant and Soil 237: 15-23. Raich, J. W. and W. H. Schlesinger (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B: Chemical and Physical Mteorology 44: 81-99. Raich, J. W., C. S. Potter and D. Bhagawati (2002) Interannual variability in global soil respiration, 1980-94. Glogal Change Biology 8: 800-812. Ramsey, P. W., M. C. Rillig, K. P. Feris, J. N. Moore and J. E. Gannon (2005) Mine waste contamination limits soil respiration rate: a case study using quantile regression. Soil Biology and Biochemistry 37: 1177-1183. Rastogi, M., S. Singh and H. Pathak (2002) Emission of carbon dioxide from soil. Current Science 82(5): 510-517. Reth, S. M. Reichstein and E. Falge (2005) The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux – A modified model. Plant and Soil 268:21-33. Rey, A., E. Pegoraro, V. Tedeschi, I. D Parri, P. G. Jarvis and R. Valentini (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology 8(9): 851-866. Rochette, P., R. Desjardins and E. Pattey (1991) Spatial and tempeoral variability of soil respiration in agricultural fields. Soil Science 71: 189-196. Rochette, P., E. G. Gregorich and R. L. Desjardins (1992) Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Soil Science 72: 605-609. Rout, S. K. and S. R. Gupta (1989) Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litter quality in forest ecosystems of Siwaliks in Northern India. Acta Oecologial Oecologia Plantum 10(3): 229-244. Savage, K. E. and E. A. Davidson (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochemical Cycles. 15: 337-350. Salifou, T., L. Thiombiano, J. R. Millogo and S. Guinko (2007) Carbon and nitrogen enhancement in Cambisols and Vertisols by Acacia spp. in eastern Burkina Faso: Relation to soil respiration and microbial biomass. Applied Soil Ecology 35:660-669. Sayer, E.J. and E. V. J. Tanner (2010) A new approach to trenching experiments for measuring root-rhixosphere respiration in a lowland tropical forest. Soil Biology and Biochemistry 42: 347-352. Silver, W. L., J. Neff, M. McGroddy, E. Veldkamp, M. Keller and R. Cosme (2000) Effects of soil texture on belowground carbon and nutrient storage in a Lowland Amazonian forest ecosystem. Ecosystems 3: 193-209. Singh, J. S. and W. H. Gupta (1977) Plant decomposition and soil respiration in terrestrial ecosysterms. The Botanical review 43: 449-529. Toshie K., K. Hiroshi, U. Youzou, S. Mitsumasa and T. Oikawa (1993) Examination of the method for measuring soil respiration in cultivated land: effect of carbon dioxide concentration an soil respiration. Ecological Research 8: 65-71. Sotta, E. D., E. Veldkamp, B. R. Guimaraes, R. K. Paixaao, M. L. P. Ruivo and S. S. Almeida (2006) Landscape and climatic controls on spatial and temporal variation in soil CO2 efflux in an eastern Amazonian rainforest, Caxiuana, Brazil. Forest Ecology and Management 237: 57-64. Subke, J. A., V. Hahn, G. Battepaglia, S. Linder, N. Buchmann and M. F. Cotrufo (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139: 551-559. Sulzman, E. W., J. B. Brant, R. D. Bowden and K. Lajtha (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73: 231–256. Tewary C. K., U. Pandy and J. S. Singh (1982) Soil and litter respiration rates in different microhabitats of a mixed oak-conifer forest and their control by edaphic conditions and subtrate quality. Plant and Soil 65: 233-238. Toshie K., K. Hiroshi, U. Youzou, S. Mitsumasa and T. Oikawa (1993) Examination of the method for measuring soil respiration in cultivated land: effect of carbon dioxide concentration an soil respiration. Ecological Research 8: 65-71. Townsend, A. R. and P. M. Vitousek (1995) Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76(3): 721-733. Vance, E. D., P. C. Brookes and D. S. Jenkinson (1987) An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry 19: 703-707. Victor, A. K., A. Dimitrios, T. Alexandros, A. Tsiontsis, G. Brofas and G. Stamatelos (2001) Litterfall, litter accumulation and litter decomposition rates in four forest ecoststems in northern Greece. Forest Ecology and Management 144: 133-127. Wan, S. Q., R. L. Norby, J. Ledford and J. F. Weltzin (2007) Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology 13: 2411–2424. Wood C. W., D. G. Westfall and G. A. Peterson (1991) Soil carbon and nitrogen changes on initiation of no-till cropping systems. Soil Science Society of America Journal 55: 470-476. Yan, J., Y. Wang, G. Zhou and D. Zhang (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology 12: 1-12. Yeh, H. W. and W. Y. Kao (1996) 13CPDB variation in contemporary bryophytes and the constraint on its use as a proxy of paleoatmospheric CO2 constents. Journal of the Geological Society of China 39(3): 325-336. Yim, M. H., S. J. Joo and K. Nnkane (2002) Comparison of field methods for measuring soil respiration: a static alkali absorption method and two dynamic closed chamber methods. Forest Ecology and Management 170: 189-197. Yohannes, Y., O. Shibistova, A. Abate, M. Fetene and G. Guggenberger (2011) Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species. Forest Ecology and Management 261: 1090-1098. Zibilske, L. M. (1994) Carbon Mineralization. In A. L. Page et al. (eds) Methods of Soil Analysis. Part 2. 2nd ed. Agronomy 38: 835-863. Zhigang, Y., F. Shenglei, Y. Weimin, Z. Guoyi, M. Jiangmang, Z. Deqiang, D Mingmao, W. Xinming and Z. Lixia (2007) Partitioning soil respiration of subtropical forest with different successional stages in south China. Forest Ecology and Management 243: 178-186.
摘要: 
本研究之目的為 (1) 利用自行設計之開放式連續抽氣鹼液吸收法與土壤呼吸自動測量儀器(LI-8100, Li-Cor, USA)兩者之測定結果進行比較;(2) 測定台灣中部地區北東眼山高海拔天然林的土壤呼吸年變化。試驗期間從2010年1月開始至2011年3月結束。
試驗結果顯示,北東眼山土壤呼吸量在保留枯落物處理之下,範圍從32.29 ± 3.41~162.08 ± 5.94 CO2 kg ha-1 day-1,平均土壤呼吸量為65.84 ± 4.07 CO2 kg ha-1 day-1;去除枯落物處理的土壤呼吸量範圍從48.69 ± 4.61~110.18 ± 5.61 CO2 kg ha-1 day-1,平均土壤呼吸量為65.84±4.99 CO2 kg ha-1 day-1;LI-8100測定之土壤呼吸量範圍從37.17 ± 0.47~121.35 ± 4.97 CO2 kg ha-1 day-1,平均土壤呼吸量為62.28 ± 1.76 CO2 kg ha-1 day-1。土壤呼吸量的季節變化,以夏季為高峰,冬季最低;日變化則隨溫度而變動,下午3點至6點有最大值,凌晨3點至7點有最小值。
本試驗區土壤呼吸量與環境因子之間的關係,以溫度為最顯著,含水率對於本地的土壤呼吸量沒有影響,微生物氮生質量亦非本試驗區土壤呼吸量的主要貢獻者;有機質、土壤pH值、土壤質地對於土壤呼吸的影響亦不顯著。保留枯落物和移除枯落物兩者未達顯著差異,且因枯落物分解而產生的CO2量在部分月份呈現負值,導因於地表枯落物的移除,增加土壤中氣體的擴散速率,提升移除枯落物處理的土壤呼吸量,顯示枯落物對於本試驗區的土壤呼吸影響亦不大。
開放式連續抽氣鹼液吸收法和土壤呼吸自動測量儀器LI-8100兩者差異不顯著且相關性高,顯示開放式連續抽氣鹼液吸收法和土壤呼吸自動測量儀器的測定質很接近,而且開放式連續抽氣鹼液吸收法相較於以往的靜態鹼吸收法更具準確性,此外亦可測得非常接近土壤呼吸的真實值。

This study used Continue Open Flow Chamber designed and Automated Soil CO2 Flux System (LI-8100, Li-Cor, USA) to measure soil respiration in Peitungyen nature forest which locates at high elevation of central Taiwan.
The result showed the soil respiration of Peitungyen which retained litter treatment, ranged from 32.29 ± 3.41~162.08 ± 5.94 CO2 kg ha-1 day-1, the average was 65.84±4.07 CO2 kg ha-1 day-1; the soil respiration of exclusion litter ranged from 48.69 ± 4.61~110.18 ± 5.61 CO2 kg ha-1 day-1, the average was 65.84 ± 4.99 CO2 kg ha-1 day-1. The soil respiration measured by LI-8100 ranged from 37.17 ± 0.47~121.3 ± 4.97 CO2 kg ha-1 day-1, the average was 62.28 ± 1.76 CO2 kg ha-1 day-1. The seasonal variation of soil respiration has the highest value in summer and the lowest value in winter. In diurnal change aspect, between the maximal soil respiration rate was between 15:00-18:00, and the minimum soil respiration between 3:00-7:00.
Temperature was the most significant factor of which effected effecting the soil respiration here. Soil moisture didn't correlate with soil respiration. Microorganism N biomass lack relevance with soil respiration, it wasn't the main contributor for soil respiration of Peitungyen. Organic matter, soil pH value and soil texture are also lacking relevance with soil respiration. Retain and exclusive litter didn't show the significant difference each other. Besides, the litter respiration showed negative value in part of months which cause that when removed the litter added soil ventilated at some time, and promoted the soil respiration which exclusive litter. It showed that the litter has little effect on soil respiration at Peitungyen.
Between Continue Open Flow Chamber and Automated Soil CO2 Flux System LI-8100 had no significant difference and had high correlation. It means Continue Open Flow Chamber which has more benefit than alkali absorbed method, Continue Open Flow Chamber can measure much closer the true value of soil respiration in addition.
URI: http://hdl.handle.net/11455/65945
其他識別: U0005-0502201216303800
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.