Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChorng-Sii Hwangen_US
dc.contributorChang-Pei Yien_US
dc.contributor.advisorChing-Yuan Yangen_US
dc.contributor.authorHuang, Ming-Yien_US
dc.identifier.citation[1]B. Razavi,“Design of Integrated Circuits for Optical Communications”, McGraw-Hill, 2003. [2]F. Gardner,“Charge-Pump Phase-Lock Loops”, IEEE Trans. Communications, Vol. 28, pp. 1849-1858, Nov. 1980. [3]M. Van Paemel,“Analysis of a charge-pump PLL: a new model”, IEEE Trans Communications, Vol.42, pp.2490-2498, July 1994. [4]M. Soyuer and R. G. Meyer,“Frequency limitations of a conventional phase-frequency detector”, IEEE Journal of Solid-State Circuits, Vol. 25, No.8, pp. 1019-1022, Aug. 1990. [5]H. O. Johansson,“A simple precharged CMOS phase frequency detector”, IEEE Journal of Solid-State Circuits, Vol. 33, No. 2, pp. 295-299, Feb. 1998. [6]M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops”, IEEE Journal of Solid-State Circuits, Vol. 37, No.10, pp. 1331-1334, Oct. 2002. [7]S. O. Jeon, T. S. Cheung and W. Y. Choi,“Phase/frequency detectors for high-speed PLL applications”, Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998. [8]N.H.W. Fong, J.-O. Plouchart, N. Zamdmer, Duixian Liu, L.F. Wagner, C. Plett and N.G. Tarr,“Design of wide-band CMOS VCO for multiband wireless LAN applications”, IEEE J. Of Solid-State Circuits, Vol. 38, No.8, pp. 1333-1341, Aug. 2003. [9]Zhenbiao Li and Kennethh K.O.,“A Low-Phase-Noise and Low-Power Multiband CMOS Voltage-Controlled Oscillator”, IEEE Journal of Solid-State Circuits, Vol. 40, No. 6, JUNE 2005. [10]S. Keliu and S.-S. Edgar, CMOS PLL Synthesizers: Analysis and Design, Springer, 2005. [11]B. D. Muer and M. Steyaert, CMOS Fractional-N Synthesizers: Design for High Spectral Purity and Monolithic Integration, Kluwer Academic Publishers, 2003. [12]A. Hajimiri and T. H. Lee, “A General theory of the phase noise in electrical oscillators”, IEEE Journal of Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998. [13]Chia-Tsun Wu, Wei Wang, I-Chyn Wey, and An-Yeu Wu,” A Scalable DCO Design for Portable ADPLL Designs” Circuit and Systems, 2005, ISCAS 2005, IEEE International Symposium on 23-26 May 2005 Page(s):5449-5452 Vol.6. [14]Roth E, Thalmann N, Felber N, Fichtner W, “A delay-line based DCO for multimedia applications using digital standard cells only” Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC.2003 IEEE International 2003 Page(s):432-505 Vol.1. [15]Abdollahi SR, Kiaei S, Bakkaloglu B, Fakhraie SM, Arivari R, Abdollahi SE, “An all-digital programmable digitally-controlled-oscillator(DCO) for digital wireledd applications” Circuits and Systems,2002. ISCAS 2002. IEEE International Symposium on Volume 4, 26-29 May 2002. Page(s):1V-101 -1V-104 Vol4. [16]Y.-T. Chang, “A GFSK Modulator by Using a Fractional-N Frequency Synthesizer”, M. S. thesis, National Taiwan University, 2003. [17]J. S. Chiang and K. Y. Chen, “A 3.3V all digital phase-locked loop with small DCO hardware and fast phase lock” Circuits and Systems, 1998. ISCAS 98. Proceedings of the 1998 IEEE International Symposium on Volume 3, 31May-3 June 1998 Page(s):554-557 Vol3. [18]J. S. Chiang and K. Y. Chen, “The design of an all-digital phase-locked loop with small DCO hardware and fast phase lock” Circuit and System II: Analog and Digital Signal Processing, IEEE Transactions on Volume 46, Issue7, July 1999 Page(s):945-950 [19]Yong Shim, Youngkwon Jo, Soohwan Kim and Kwangiun Cho, “A register controlled delay locked loop using a TDC and a new fine delay line scheme” Cricuits and Systems, 2006 ISCAS 2006. Proceedings, 2006 IEEE International Symposium on 21-24 May 2006. [20]Robert Bogdan Staszewski and Poras T. Balsara, “All-digital frequency synthesizer in deep-submicron CMOS”, John Wiley and Sons, INC., New Jersey, 2006. [21]G. Reehal,“A Digital Frequency Synthesizer Using Phase Locked Loop Technique”, M.S. Thesis, Ohio State University, 1998. [22]B. Razavi,“Monolithic Phase-Locked Loops and Clock Recovery Circuits” IEEE 1996. [23]V. Kratyuk, P.K. Hanumolu, K. Mayaram, and U. K. Moon, “A 0.6GHz to 2GHz Digital PLL with Wide Tracking Range,” IEEE 2007 Custom Integrated Circuits Conference, Sept. 2007, pp. 305-308 [24]N. D. Dalt, E. Thaller, P. Gregorius, and L. Gazsi, “A Compact Triple-band Low-jitter Digital LC PLL with Programmable Coil in 130-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1482-1490, July 2005. [25]R.B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3V 20 ps Time-to-digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220-224, March 2006. Bibliography 119 [26]V. Kratyuk, P.K. Hanumolu, K. Ok, K. Mayaram, and U. K. Moon,“A Digital PLL with a Stochastic Time-to-digital Converter,” in Proc. Symposium on VLSI Circuits Digest of Technical Papers, 2006, pp. 31-32 [27]R. Tonietto, E. Zuffetti, R. Castello, and I. Bietti, “A 3MHz Bandwidth Low Noise RF All Digital PLL with 12ps Resolution Time to Digital Converter,” in Proceedings of the 32nd European Solid-State Circuits Conference (ESSCIRC), Sept. 2006, pp. 150-153 [28]V. Ramakrishnan, and P.T. Balsara, “A Wide-range, High-resolution, Compact, CMOS Time to Digital Converter,” in Proceedings of the 19th International Conference on VLSI Design, Jan. 2006. [29]M. Lee and A. A. Abidi, “A 9 b, 1.25 ps Resolution Coarse-fine Time-to-digital Converter in 90 nm CMOS that Amplifies a Time Residue,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 769-777, April 2008. [30]J. Tierney, C. M. Rader, and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroncoust. vol. AU-19, no. 1, pp. 48-57, Mar. 1971. [31]Jim Dunning, Gerald Garcia, Jim Lundberg, and Ed Nuckolls,“An ALL-Digital Phase-Locked Loop with 50-cycle Lock Time Suitable for High Performance Microprocessors”, IEEE Journal of Solid-State Circuits, Vol.30, no.4, pp.412-422, Apr. 1995. [32]Ching-Che Chung and Chen-Yi Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE Journal of Solid-State Circuit, Vol. 38, NO. 2, Feb. 2003, pp.347-351 [33]Pao-Lung Chen, Ching-Che Chung and Chen-Yi Lee, “ An all-digital PLL with cascaded dynamic phase average loop for wide multiplication range applications” IEEE International Symposium on. Circuits and Systems, 2005. ISCAS 2005. vol. 27, 4875 - 4878, May. 2005. [34]Takashi Tokairin, Mitsuji Okada, Masaki Kitsunezuka, Tadashi Maeda and Muneo Fukaishi, “A 2.1-to-2.8 GHz Low-Phase-Noise All-Digital Frequency Synthesizer with a Time-Windowed Time-to-Digital Converter ” IEEE Journal of Solid-State Circuit, vol. 45, no. 12, Dec. 2010. [35]S. Y. Yang, W. Z. Chen, and T. Y. Lu, “A 7.1 mW, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578-586, Mar. 2010. [36]P.-L. Chen, C.-C. Chung and C.-Y. Lee, “An all-digital PLL with cascaded dynamic phase average loop for wide multiplication range applications,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 4875-4878, May 2005. [37]S. Y. Lin and S. I. Liu, “A 1.5 GHz All-Digital Spread-Spectrum Clock Generator” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111-3119, Nov. 2009. [38]C.-C. Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-speed clock generation,” IEEE J. Solid-State Circuits, vol. 38, pp. 347-351, Feb. 2003. [39]Wong Man Chun, “A 1.8V 2.4GHz Monolithic CMOS Inductor-less Frequency Synthesizer for Bluetooth Application” the Hong Kong University of Science and Technology, M. S. thesis, Aug. 2002.zh_TW
dc.description.abstract最近幾十年來,在製程的進步和電晶體尺寸縮小的趨勢,這可使電路設計上得到更高的操作頻率和更少的功率消耗,卻不利於類比電路設計;反之,這種趨勢更有利於數位電路設計,因此已有許多的類比電路改以數位方式實現,如:鎖相迴路和資料時脈回復電路。本論文將分成四個部分來做介紹。 首先,第一部份則是探討一些基本的全數位鎖相迴路架構和其構成的單元。和通訊系統的應用頻帶與其規格。 第二部分則介紹目前三個種類的鎖相迴路,類比式的鎖相迴路,數位式的鎖相迴路以及全數位式的鎖相迴路。鎖相迴路的基本理論以及設計,且會針對一些常用到的相位偵測器、電荷幫浦、壓控振盪器作分類說明。第三部分,我們提出了一個全數位鎖相迴路,這電路中包含了bang-bang相位偵測器、數位控制電路、數位壓控振盪器以及頻率偵測器。在這架構中,一個二位元型態的全數位鎖相迴路需要較長的頻率獲取時間,因為相位頻率偵測器的輸出僅為+1 和-1,故提出一個有效的減少頻率獲取時間的演算法,在全數位鎖相迴路中的數位控制振盪器對於電源雜訊有很大影響。最後,我們實現一個可應用在ISM 頻帶全數位式鎖相迴路,相較於傳統技術,此電路不但能快速鎖定,且具有低相位雜訊的優點。而此電路是以0.18 微米的互補式金氧半製程作模擬,操作在2.4GHz,相位雜訊約-135dBc/Hz,晶片面積為1.1*1.2mm2。zh_TW
dc.description.abstractOver the last decades, the orientation of the fabrication process is to shrink the scaling of the transistor. Scaling down the transistor will have less power consumption and faster operation frequency to design circuits. However, it has extra drawbacks for analog circuits, but it is more suitable for digital circuits. Therefore, digital equivalent implementations of analog circuits are more popular, such as the phase-locked loop and the clock and data recovery. The thesis will be divided into four parts. First, the thesis describes an all-digital phase-locked loop for ISM frequency band in wireless communication. The second part of this thesis introduces the analog phase-locked loop (APLL), digital phase-locked loop (DLL) and all-digital phase-locked loop (ADPLL), introducing the fundamentals of the phase frequency detector, the charge pump, the loop filter and the voltage control oscillator. The third part primarily introduces an ADPLL. The ADPLL circuit contains a bang-bang type phase detector, a digital control circuit, a DCO and a frequency detector. The ADPLL needs long frequency acquisition time because the phase detector only has binary outputs, +1 and −1. The proposed algorithm can effectively reduce the frequency acquisition time. The supply noise toward the DCO has severely impact in ADPLL. In the last part, we realize an ADPLL for frequency synthesis. The frequency synthesizer is simulated in TSMC 0.18 CMOS technology. Its operation frequency is 2.4GHz, the total power is 40mW, the phase noise is about -135dBc/Hz at 1MHz offset, and the total area is 1.1*1.2mm2en_US
dc.description.tableofcontentsTable of Contents 摘 要 I Abstract II Table of Contents III List of Figures V List of Tables VII Chapter 1 - 1 - Introduction - 1 - 1.1 Motivation - 1 - 1.2 WLAN 802.11 Introduction - 3 - 1.3 Review and Comparison with Reference - 4 - Chapter 2 - 12 - Introduction to Phase Lock Loop - 12 - 2.1 Phase Lock Loop - 12 - 2.2 Linear Phase-Locked Loop - 13 - 2.3 Digital Phase-Locked Loop - 13 - 2.31 Phase Frequency detector - 14 - 2.3.2 Charge pump - 16 - 2.3.3 Loop Filter - 18 - 2.3.4 Divider - 21 - 2.3.5 Voltage Control Oscillator - 21 - 2.4 All Digital Phase-Locked Loop - 24 - Chapter 3 - 26 - All-Digital Phase-Locked Loop - 26 - 3.1 Introduction - 26 - 3.2 Basic Concept of Digital-Controlled Oscillator - 27 - 3.3 Basic Concept of Digital Loop Filter - 30 - 3.4 Basic Concept of Bang-Bang PD - 33 - 3.5 Basic Concept of Time-to-Digital Converter - 37 - 3.6 Basic Concept of Divider - 40 - Chapter 4 - 45 - A 2.4GHz All-digital Phase-locked loop - 45 - 4.1 Introduction - 45 - 4.2 Architecture - 46 - 4.3 Circuit Description - 48 - 4.3.1 Phase Detector - 48 - 4.3.2 Frequency Detector - 51 - 4.3.3 Digital Loop Filter - 52 - 4.3.4 LC Tank Digital Control Oscillator - 54 - 4.3.5 Programmable Divider - 57 - 4.3.6 Counter with Addition and Subtraction - 60 - 4.4 Circuit Simulation - 61 - 4.4.1 Simulation and Parameters Calculation in Maltlab - 61 - 4.4.2 Simulation in Hspice and Spectre RF - 65 - 4.5 Specification: - 73 - 4.6 Measurement - 74 - 4.7 Summary of Measurement Result - 76 - Chapter 5 - 78 - Conclusion and Future Work - 78 - References - 79 -zh_TW
dc.subjectAll-Digital Frequency Synthesizeren_US
dc.title2.4GHz 可適性全數位頻率合成器zh_TW
dc.titleA 2.4GHz All-Digital Adaptive-Locked Frequency Synthesizeren_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:電機工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.