Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65966
標題: 苗栗後龍海岸木麻黃與水黃皮根瘤固氮率及游離固氮率之季節性變化
Seasonal Dynamics of Free Living and Root Nodule Nitrogen Fixation Rate of Casuarina equisetifolia and Ponggamia pinnata in Coastal Windbreak Forest at Houlong, Miaoli
作者: 黃家瑩
Huang, Chia-Ying
關鍵字: Nodule nitrogen fixation;根瘤固氮;Free living nitrogen fixation;Seasonal;游離固氮;季節變化
出版社: 森林學系所
引用: 柒、參考文獻 沈宏、嚴小龍 (2001) 根系分泌作用及其誘導機制。土壤與環境 10(4): 339-342。 呂政芳 (2011) 乾旱逆境下接種菌根對木賊葉木麻黃(Casuarina equisetifolia)根瘤固氮及非共生固氮之影響。國立中興大學森林學系碩士論文 1-56頁。 李明仁 (1986) 台灣赤楊天然林放射菌根瘤生物量及共生固氮作用之季節性變異。中華林學季刊 19(3): 13-23。 李明仁 (1996) 台灣赤楊及恆春楊梅之共生固氮作用。台灣農業 32(2): 87-97。 李芳婷 (2002) 台中港區木麻黃防風林固氮量與養分動態之研究。國立中興大學森林學系碩士論文 1-58頁。 林良平 (1993) 土壤微生物學。南山堂出版社 p. 291-353。 林耿安 (2003) 觀霧地區不同海拔台灣赤楊根瘤固氮效率與叢枝菌根菌型態之研究。國立中興大學森林學系碩士論文1-98頁。 林素禎、吳繼光 (2005) 微生物肥料在合理施肥之應用。合理化施肥專刊 p. 289-304。 唐盛林、郭幸榮、王維洋 (1992) 二個產地台灣赤楊根瘤固氮放線菌之分離接種及其固氮活性之比較。中華林學季刊 25(1): 59-72。 郭幸榮、張隆城 (1989) 五種巨量養分對木麻黃類固氮作用之效應。中華林學季刊 22(4): 29-40。 陳一尚、郭幸榮 (1987) 台灣赤楊幼苗固氮作用影響因子之初步研究。台大實驗林研究報告 1(4): 9-31。 陳財輝、呂錦明 (1988) 苗栗海岸沙丘木麻黃人工林之生長及林分生物量。林業試驗所研究報告季刊 3(1): 333-343。 陳財輝、呂錦明、沈慈安 (1990) 苗栗海岸地區不同齡級木麻黃防風林生長之調查。林業試驗所研究報告季刊 5(1): 17-24。 張焜標 (1995) 內生菌根菌接種及不同磷肥濃度對雨豆樹幼苗生長、固氮作用與磷肥利用效應之影響。國立中興大學實驗林研究報告 17(1): 109-123。 許曉琪 (2003) 煤礦棄土琉球松造林地中土壤游離固氮潛能與土壤溶液之季節變動。國立中興大學森林學系碩士論文 1-76頁。 楊秋忠、趙震慶 (2006) 根瘤菌的特色及應用發展。農業生技產業季刊 8: 20-24。 新楠、連秀芬、樊明壽 (2005) 非共生生物固氮的重要性和研究進展。內蒙古農業科技 2: 18-29。 劉業經、呂福原、歐辰雄 (1994) 臺灣樹木誌。國立中興大學農學院出版委員會 235、323頁。 顏江河、周名倩 (2006)不同養分處理下根瘤與菌根對木賊葉木麻黃固氮作用之效應。台灣林業科學 21(4): 523-530。 譚鎮中、黃世傑、李振州 (1998) 關刀溪集水區土壤氮素礦化與生物固氮作用。土壤與環境 1(4): 371-379。 Becking, J. H. (1970) Plant-endophyte symbiosis in non-leguminous plants. Plant and Soil 32: 611-654. Hill, S. (1992) Physiology of nitrogen fixation in free-living heterophs. In Biology Nitrogen Fixation. Chapman and Hall, New York. p. 87-134. Huss-Danell, K., P. O. Lundquist and A. Ekblad (1989) Growth and acetylene reduction activity by intact plant of Alnus incana under field conditions. Plant and Soil 118: 61-73. Ingestad, T. (1980) Growth, nutrition and nitrogen fixation in grey alder at varied rates of nitrogen addition. Physiology Plant 50: 353-364. Kass, D. C. L., S. B. Rosemary and P. Nygren (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biology Biochemistry 29(5/6): 775-785. Kavadia A., D.V. Vayenas, S. Pavlou and G. Aggelis (2007) Dynamics of free-living nitrogen-fixing bacterial populations in antagonistic conditions. Ecological Modelling 200: 243-253. Lee, Y. Y. and Y. Son (2005) Diurnal and seasonal patterns of nitrogen fixation in an Alnus hirsuta plantation of central Korea. Journal of Plant Biology 48(3): 332-337. Limmer, C. and H. Drake (1996) Non-symbiotic N2-fixation in acidic and pH-neutral forest soil: aerobic and anaerobic differentials. Soil Biology Biochemistry 28(2): 177-183. Limmer, C. and H. Drake (1998) Effects of carbon, nitrogen and electron acceptor availability on anaerobic N2-fixation in a beech forest soil. Soil Biology Biochemistry 30(2): 153-158. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA.SSSA. Madison, Wisconsin. McNabb, D. H. and J. M. Geist (1979) Acetylene reduction assay of symbiotic N2-fixation under field conditions. Ecology 60(5): 1070-1072. Mishustin, E. N and V. K. Shilnikova (1969) The biological fixation of atmospheric nitrogen by free-living bacteria. Soil Biology Reviews of Research. Unesco, Belgium p. 65-109. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nded. Blackwell Scientific Publications. Oxford, London, Edinburgh. Noh, N. J., Y. Son, J. W. Koo, K. W. Seo, R. H. Kim Y. Y. Lee and K. S. Yoo (2010) Comparison of nitrogen fixation for north- and south-facing Robinia pseudoacacia stands in central Korea. Journal of Plant Biology 53: 61-69. Obertello, M., M. O. Sy, L. Laplaze and C. Santi (2003) Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. African Journal of Biotechnolog 2(12): 528-538. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA.SSSA. Madison, Wisconsin. Patra, A. K., L. Abbadie, A. Clays-Josserand, V. Degrange, S. Grayston, N. Guillaumaud, P. Loiseau, F. Louault, S. Mahmood, S. Nazaret, L. Philippot, F. Poly, J. I. Prosser and X. Le Roux (2006) Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environment Microbiology 8: 1005-1016. Pregent, G. and C. Camire (1985) Mineral nutri¬tion, dinitrogen fixation and growth of Alnus crispa and Alnus glutinosa. Canadian Journal Forest Research 15: 855-861. Purwantari, N. D., R. A. Date and P. J. Dart (1995) Nodule and N2-fixation by Calliadra calothyrsus and Sesbania sesban grown at different root temperature. Soil Biology Biochemistry 27: 421-425. Rodiguez-Barrueco, D., A. H. Mackintosh and G. Bond (1970) Some effects of combined nitrogen on the nodule symbioses of Casuarina and Ceanothus. Plant and Soil 33: 129-139. Roskoski, J. P. (1980) Nitrogen fixation in hardwood forests of the northeastern United States. Plant and Soil 54: 33-44. Sayed, W. F., C. T. Wheeler, H. H. Zahran and A. A. M. Shoreit (1997) Effect of temperature and soil moisture on the survival and symbiotic effectiveness of Frankia spp. Biology and Fertility of Soils 25: 349-353. Sharma, G., R. Sharma, E. Sharma and K. K. Singh (2002) Performance of an age series of Alnus-cardamom plantations in the Sikkim Himalaya: nutrient dynamics. Annals of Botany 89: 273-282. Sprent, J. I. and R. Parsons (2000) Nitrogen fixation in legume and non-legume trees. Field Crops Research 65: 183-196. Taiz, L. and E. Zeiger (2002) Plant physiology. 3rd. Sinauer Associate, Lnc., New York p.270-271. Teklehaimanot, Z. and R. Martin (1999) Diurnal and seasonal patterns of nitrogenase activity of red alder in comparison with white clover in silvopastoral agroforestry systems. Biology and Fertility of Soils 28: 267-270. Tobita, H., S. F. Hasegawa, X. Tian, S. Nanami and H. Takeda (2010) Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz.) var. sibirica. Symbiosis 50: 77-86. Vermani, M. V., S. M., Kelkar and M. Y., Kamat (1997) Studies in polysaccharide production and growth of Azotobacter vinelandii MTCC 2459, a plant rhizosphere isolate. Letters in Applied Microbiology 24: 379-383. Vitousek, P. M., K. Cassman, C. Cleveland, T. Crews, C. B. Field, N. B. Grimm, R. W. Howarth, R. Marino, L. Martinelli, E. B. Rastetter and J. I. Sprent (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58: 1-45.
摘要: 
本研究之目的,在測定苗栗後龍海岸生育地木賊葉木麻黃(Casuarina equisetifolia)與水黃皮(Pongamia pinnata),根瘤固氮活性與游離固氮潛能的季節變化,以瞭解生育地土壤中,氮的供給狀況與植體氮、磷動態。
於研究樣區選取造林後2年生與6年生之優勢木和劣勢木木麻黃與水黃皮,以乙炔還原法測定根瘤固氮活性與游離固氮潛能,並調查其土壤與植體的氮、磷養分。
結果顯示,兩樹種都在2009年6月時有最大的根瘤固氮活性(8.38~15.05 ; 9.37~29.40 C2H4 hr-1 g dwt-1),於2009年10月至2010年1月時有最小根瘤固氮活性(0.22~0.71; 0.38~1.18 C2H4 hr-1 g dwt-1)。在植體全氮濃度和根瘤固氮活性之間,木麻黃與水黃皮皆呈顯著正相關(p<0.01),且水黃皮優勢木的根瘤固氮活性較劣勢木佳,推測根瘤固氮能幫助植物的生長。本實驗亦發現,土壤游離固氮潛能與根瘤固氮活性的季節性變化呈負相關,並且游離固氮潛能與生長勢和植體全氮濃度之間呈負相關,而根瘤固氮活性則剛好與游離固氮潛能相反,呈正相關,推測可能是游離固氮能量來源之根系分泌物,會與植物體內的碳/氮比相關。
本研究證實,木麻黃與水黃皮根瘤固氮活性與游離固氮潛能,皆有季節性變化,但根瘤固氮活性與游離固氮潛能彼此間有負相關,而林木的根瘤固氮活性越高,對林木的生長越有幫助。

The purposes of this study were to investigate seasonal dynamics of nodule and free-living nitrogen fixation rate of Casuarina equisetifolia and Pongamia pinnata in the coastal windbreak forest at Houlong, Miaoli, to understand the habitat's nitrogen supply conditions and plants nutrient dynamics in the soil.
2 years and 6 years old of the dominant and suppressed trees were selected in the study plots, using the acetylene reduction method to determine the activity of nodule and free-living nitrogen fixation. The nitrogen and phosphorus nutrients in the soils and plants were also investigated.
The results showed that the two species owned the largest nitrogen fixation activity in June, 2009 (8.38~15.05 ; 9.37~29.40 C2H4 hr-1 g dwt-1); and the minimum nitrogen fixation activity from October, 2009 to January, 2010 (0.22~0.71; 0.38~1.18 C2H4 hr-1 g dwt-1). On both Casuarina and Pongamia, there is significant positive correlation between plant total nitrogen concentration and nodule nitrogenase activity (p<0.01). Moreover, in Pongamia, dominant trees have higher nodule nitrogenase activity than those of suppressed. It clearly showed that nodules nitrogen fixation could help the plant growth. This study also found that the free-living nitrogen fixation potential of the soil and the nodule nitrogenase activity in seasonal changes were negatively correlated with growth potential and plant total nitrogen concentration. It was speculated that the root exudate is the free-living nitrogen bacteria's energy source related to the carbon / nitrogen ratio in plants.
This study demonstrated that there are seasonal changes in nodules and free-living nitrogen fixation of Casuarina and Pongamia. However, there is negative correlation between nodule nitrogenase activity and free-living nitrogen-fixing has a negative correlation. The higher the nodule nitrogenase activity is, the more it helps the growth of trees.
URI: http://hdl.handle.net/11455/65966
其他識別: U0005-1208201113130300
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.