Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/65969
DC Field | Value | Language |
---|---|---|
dc.contributor | 吳耿東 | zh_TW |
dc.contributor | 王升陽 | zh_TW |
dc.contributor | 王益真 | zh_TW |
dc.contributor | 趙國評 | zh_TW |
dc.contributor | 張上鎮 | zh_TW |
dc.contributor | 張惠婷 | zh_TW |
dc.contributor | 彭元興 | zh_TW |
dc.contributor.advisor | 蘇裕昌 | zh_TW |
dc.contributor.author | 何振隆 | zh_TW |
dc.contributor.author | Ho, Chen-Lung | en_US |
dc.contributor.other | 中興大學 | zh_TW |
dc.date | 2012 | zh_TW |
dc.date.accessioned | 2014-06-09T09:29:09Z | - |
dc.date.available | 2014-06-09T09:29:09Z | - |
dc.identifier | U0005-1212201115361700 | zh_TW |
dc.identifier.citation | Aaltonen, O., A. Johansson, H. Oksanen, P. Ylinen. (1984) Method for delignifying lignocellulose containing material. Finn. Pat. Appl. No. 844261. Aaltonen, O., A. Johansson, P. Ylinen. (1990) Organosolv pulping: softwood delignification kinetics and selectivity in THFA HCl-pulping. In Wood Processing and Utilization; Kennedy, J.F., Phillips, G.O., Williams, P.A., Eds.; Ellis-Horwood, Inc.: Chichester. pp. 62-68. Abatzoglou, N., E. Chornet, K. Belkacemi. (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to ligno cellulosics fractionation. Chem. Eng. Sci. 47: 1109- 1122. Abdul-Karim, L., A. Rab, E. Polyanszky. (1998) Kinetics of delignification in kraft pulping of wheat straw and hemp. Tappi J. 78 (8): 161-164. Achmad, F., K. Yamane, S. Quan. (2009) Synthesis of polylactic acid by direct polycondensation under vacuum withoutcatalysts, solvents and initiators. Chem. Eng. J. 151: 342-350. Akerberg, G.C., K. Hofvendahl, G. Zacchi. (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis var. lactis ATCC 19435 in whole-wheat flour. Microbiol. Biotechnol. 49: 682-690. Aksu, Z., T. Kutsal. (1986) Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together. Biotechnol Lett. 8: 157-160. Alcaide, L.J., J.C.G. Dominguez, I.P. Ot. (2003) Influence of cooking variables in the organosolv pulping of wheat straw using mixtures of ethanol, acetone, and water. Tappi J. 86(1): 27-38. Alekseeva, O.P., B.D. Bogomolov. (1968) Study of lignin isolated from sprucewood with dimethylsulfoxide. Khim. Drev. (Riga). 1: 153-156. Anderson, J.M., M. Shive. (1999) Biodegradation and biocompatibility of PLA and PLGA microspheres.Advanced Drug Delivery Reviews. 28: 5-24. Anon. (1984) APR (Alcohol pulping and recovery) process offers significant savings. Paper London. 202(6): 25-26. Antal, L., L. Paszner, N. Behera, M.M. Micho. (1984) Influence of quaternary ammonium groups on mechanical properties of softwood organosolv pulps. Tappi Res. Development Conf. (Appleton, WI, 30 Septem¬ber-3 October 1984) Proc. pp. 223-227. Apostol, A.V., V.P. Kozlov. (1979) Effect of impregnating birchwood chips with various concentrations of acetic acid on some physical and mechanical properties. Izv. VUZ. Lesnoi. Zh. 1: 64-66. April, G.C., M.M. Kamal, J.A. Reddy, G.H. Bowers, S.M. Hansen. (1979) Delignification with aqueous-organic solvents, southern yellow pine. Tappi J. 62 (5): 83-85. April, G.C., R. Bharoocha, J. Sheng, S.M. Hansen. (1982) Prehydrolysis achieves higher organosolv delignification. Tappi J. 65(2): 41-44. Araki, H., H. Takagi, T. Aoyagi, H. Kawabata, S. Kachi, T. Nagasawa. (1985) Solvolysis pulping in aqueous phenols and evaluation of pulp quality. Tappi Pulping Conf. (Hollywood, FL, 3-7 November 1985) Proc. Book 3, pp. 655-663. Aronovsky, S.I., R.A. Gortner. (1936) The cooking process, IX, pulping wood with alcohols and other organic reagents. Ind. Eng. Chem. 28: 1270-1276. Atchison, J.E. (1987) Data on non-wood plant fibres. In: Pulp and Paper Manufacture, Vol. 3, Secondary Fibers and Nonwood Pulping, Joint Textbook Committee Montreal, Canada, pp. 4-16. Atchison, J.E. (1996) Twenty-five years of global progress in nonwood plant fiber repulping. Tappi J. 79(10), pp. 87-95. Atchison, J.E. J.N. McGovern. (1987) History of paper and the importance of nonwoodfibers. In: Pulp and Paper Manufacture, Vol. 3, Secondary Fibers and Nonwood Pulping, Joint Textbook Committee Montreal, Canada, pp. 1-3. Ave´rous, L. (2004) Biodegradable multiphase systems based on plasticized starch: a review. J. Macro. Sci. 44: 231-274. Axegård, P., S. Moldenius, L. Olm. (1979) Basic chemical kinetic equations are useful for understanding of pulping processes. Svensk Papperst. 82(5): 131-136. Aziz, S., K. Sarkanen. (1989) Organosolv pulping - a review. Tappi J. 72(3): 169-175. Bachner, K., K. Fischer, E. Baucker. (1993) Zusammenhang zwischen aufbau der zellwand und festigkeitseigenschaften bei faserstoffen von konventionellen und neuen aufschluverfahren. Das. Papier. 47: 30-40. Baillie, J. (1997) Yoghurt launch for biodegradable pot. Packag. Week.13: 22-23. Bakaiova, C. (1966) Properties of pulps obtained in non-aqueous media, Thesis, Bratislava SVST, 49 pp. Balhar, L. (1965) Delignification of spruce and beech woods with organic solvents. Sb. Vyskum. Pr. Odboru Celulozy Papiera. 10: 9-18. Baosman, A.A., G.C. Fettis, M.J. Ramsden, S.J. Smith, J.F. Kennedy, G.O. Phillips, P.A. Williams. (1996) The chemistry and processing of wood and plant fibrous materials. International conference proceedings - CELLUCON 94, Kinetics and mechanism of wheat straw pulping. pp. 81-97. Basedow, A.M., K.H. Ebert, H.J. Ederer. (1978) Kinetic Studies on the Acid Hydrolysis of Dextran. Macromolecules. 11: 774-781. Baumeister, M., E. Cyrobenzell, H. Nicolaus. (1980) Process and apparatus for continuously pulping fibrous vegetable material, Ger. Pat 2,855, 052. Baumeister, M., E. Edel. (1980) Athanol-Wasser-Aufschluss. Das Papier. 34(10A): V9-V18. Behera, N.C., L. Paszner. (1985) Topochemistry of softwood delignification by alkaliearth metal salt catalysed organosolv pulping. Tappi Pulping Conf. (Hollywood, FL, 3-7 November 1985) Proc. Book 3. pp. 667-677. Benninga, H. (1990) A history of lactic acid making. Kluwer Academic Publishers, Dordrecht Boston London. Bhardwaj, N.K., S.K. Goyal, A. Gupta, J.S. Upadhyaya, A.K. Ray. (2005) Soda and soda-anthraquinone pulping of rice straw. Appita J. 58(3): 180-185. Bleach, N.C., K.E. Tanner, M. Kellomaki, P. Tormala. (2001) Effect of filler type on the mechanical properties of self-reinforced polylactide-calcium phosphate composites. J. Mater. Sci. Mater. Med. 12: 911-915. Bogaert, J.C., P. Coszach. (2000) Poly(lactic acids): a potential solution to plastic waste dilemma. Macromol. Symp. 153: 287-303. Bogomolov, B.D., A.S. Groshev, G.I. Popova, A.P. Vishnyakova. (1979a) Wood delignification with tetrahydrofurfurylalcohol. (1). Comparison of delignification capacity of tetrahydrofurfurylalcohol and other organic solvents. Khim. Drev. (Riga). 4: 21-24. Bogomolov, B.D., A.S. Groshev, G.I. Popova, A.P. Vishnyakova. (1979b) Wood delignification with tetrahydrofurfuryl alcohol. (2). Delignification of birchwood. Khim. Drev. (Riga). 6: 43-46. Bogomolov, B.D., A.S. Groshev, G.I. Popova, A.P. Vishnyakova. (1979c) Method of delignifying lignocellulosic materials, USSR. Pat. 672, 260. Bonnin, E., H. Grangé, L. Lesage-Meessen, M. Asther, J.F. Thibault. (2000) Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydr. Polym. 41: 143-151. Borchardt, L.G., C.V. Piper. (1970) A gas chromatographic method for carbohydrates as alditol-acetates. Tappi J. 53: 257-260. Bose, S.K., R.C. Francis. (1999) The role of beta-O-4 cleavage in acidic organosolv pulping of softwoods. J. Pulp Pap. Sci. 25: 425-430. Bostman, O., E. Hirvensalo, J. Makinen, P. Rokkanen. (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J. Bone Joint Surg. 72: 592-596. Bostman, O., U. Paivarinta, E. Partio, J. Vasenius, M. Manninen, P. Rokkanen. (1992) Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. J. Bone Joint Surg. 74: 1021-1031. Botello, I., M.A. Gilarranz, F. Rodríguez. (1999) Preliminary study on products distribution in alcohol pulping of Eucalyptus globulus. J. Chem. Technol. Biot. 74(2): 141-151. Botello, J.I., M.A. Gilarranz, F. Rodriguez, M. Oliet. (1998) Wood fractionation by cooking in alcohol-water media. Fifth european workshop on lignocellulosics chemistry for ecologically friendly pulping and bleaching technologies. Portugal. pp. 217-220. Bowen, I.J., J.C.L. Hsu. (1990) Overview of emerging technologies in pulping and bleaching. Tappi J. 73(9): 205-217. Bowers, G.H., G.C. April. (1977) Aqueous n-butanol delignification of southern yellow pine. Tappi J. 60(8): 102-104. Brady, W.P., B.A. Barna, R.A. Lamparter. (1981) Solvent pulping by HMDA (heksamethylenediamine) extraction of lignin offers potential for high-yield high-quality pulp. Tappi Pulping Conf. Proc. pp. 477-484. Brickman, L., J.J. Pyle, J.L. McCarthy, H. Hibbert. (1939) Studies on lignin and related compunds, XXXIX: the ethanolysis of spruce and maple woods. J. Am. Chem. So. 61: 868-869. Bucholtz, M., R. Jordan. (1983) Formic acid woodpulping could yield valuable chemical products. Pulp Pap. 57(9): 102-104. Bucholz, M., R. Jordan. (1982) Formic acid wood pulping. Gannon Univ. Ann. Energy Sem. 4th, pp. 217-226. Bulut, S., M. Elibol, D. Ozer. (2004) Effect of different carbon sources on L(+)- lactic acid production by Rhizopus oryzae. Biochem. Eng. J. 21: 33-37. Burkart, L.F., N. Quigley. (1969) Pulping of lignocellulosic material with a reaction product of triethyleneglycol and organic acid, US Pat. 3,442,743. Burkart, L.F., N. Quigley. (1970) Process for separating lignin from vegetable material using a mixture of triethyleneglycol and arylsulfonic acid, US Pat. 3,522,230. Bustos, G., J.A. Ramrez, G. Garrote. (2003) Modeling of the hydrolysis of sugarcane vagase with hydrochloric acid. Appl. Biochem. Biotech. 104: 51-68. Cam, D., H. Suong, Y. Ikada. (1995) Degradation of high molecular weight poly(l-lactide) in alkaline medium. Biomaterials. 16: 833-843. Camacho, F., P. Gonzlez-Tello, E. Jurado. (1996) Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J. Chem. Technol. Biotechnol. 67: 350-356. Caplan, Y.H., B. Levine. (1989) Abbott phencyclidine and barbiturates abused drug assays: evaluation andcomparison of ADx FPIA, TDx FPIA, EMIT, and GC/MS methods. J. Anal. Toxicol. 13(5): 289-292. Cerny, M., B. Lohr, V. Hnetkovsky. (1968) Method of producing pulp and lignin, Czechosl. Pat. 126,812. Chandra, R., R. Rustgi. (1998) Biodegradable polymers. Prog. Polym. Sci. 23: 1273-1335. Chang, P.C., L. Paszner. (1983) Aqueous catalyzed solvent pulping of lignocellulose, Can. Pat. 1,150,012. Chemeris, M.M., N.P. Mel''nik, B.N. Salin. (1983). Method of producing pulp, USSR Pat. 1,043,211. Choi, J.G., M. Kim, R. Dadoo, R.N. Zare. (2001) Electrophoretron: a new method for enhancing resolution in electrokinetic separations. J. Chrom. A. 924: 53-58. Claeyssen, M., G. Aerts. (1992) Characterization of cellulolytic activities. in commercial Trichoderma reesei preparations: an approach using small chromogenic substrates. Biores. Technol. 39: 143-146. Clark, J. (1985) Pulp Technology and Treatment for Paper (2nd Edn.). San Francisco: Miller Freeman., pp. 212-241. Clayton, D., D. Easty, D. Einspahr, W. Lonsky, E. Malcolm, T. Mcdonough, L. Schroeder, N. Thompson. (1989) Chemistry of alkaline pulping. In Pulp and Paper Manufacture: Alkaline Pulping, Grace, T.M., Malcolm, E.W, Eds.; Joint Text book Committee of the Paper Industry: Canada. pp. 51-73. Curcvelo, A., S. Aprigio, R. Rereire. (1995) Int.Symp. Wood Pulping Chem. 8th, vol. 2, pp. 473-478. Dahlmann, J., G. Rafler, K. Fechner, B. Mehlis. (1990) Synthesis and properties of biodegradable aliphatic polyesters. British Polym. J. 23 (3): 235-240. Dang, V.Q., K.L. Nguyen. (2007) A universal kinetic equation for characterising the fractal nature of delignification of lignocellulosic materials. Cellulose. 14: 153-160. Dattaa, R., S.P. Tsaia, P. Bonsignorea, S.H. Moona, J.R. Frank. (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS. Microbiol. Rev. 16: 221-231. Deineko, I.P., D.V. Evtyugin. (1989) Oxygen pulping of chips in aqueous acetone solutions. Khim. Drev. (Riga). 3: 106-107. Deniz, I., H. Kirci, S. Ates. (2004) Optimization of wheat straw Triticum drum Kraft pulping. Ind. Crop. Prod. 19 (3): 237-243. Derra, R., C. Derra, R. Derra. (1980) Process for pulping cellulosic vegetable material. Ger. Pat. 2,828,740. Diebold, V.B., W.F. Cowan, J.K. Walsh. (1980) Solvent pulping process. Can. Pat. 1,079,008. Djamal, S., Y. Kojima, T. Kayama. (1984) The strength properties of pulps from Red Lauan produced by different pulping methods. J. Tappi. 38(7): 53-58. Dong K.Y., D. Kim, D.S. Lee. (2005) Reaction kinetics for the synthesis of oligomeric poly(lactic acid). Macro. Res. 13: 68-72. Dong K.Y., D. Kim, D.S. Lee. (2006) Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst. Macro. Res. 14: 510-516. Dorgan, J.R., H.J. Lehermeier, L.I. Palade, J. Cicero. (2001) Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 175: 55-66. Doucet, J., A. Robert. (1965) Le Dimethylsulfoxyde, possibilites d''utilisation pour la separation des constituants vegetaux et la preparation des pates cellulosiques. Papier Carton Cellulose. 14(5): 91-94. Drumright, R.E., P.R. Gruber, D.E. Henton. (2000) Polylactic Acid Technology. Adv. Mater.12: 1841-1846. Duek, E.A.R., C.A.C. Zavaglia, W.D. Belangero. (1999) In vitro study of poly(lactic acid) pin degradation. Polymer. 40: 6465-6473. Edwards, L., S.E. Norberg. (1973) Alkaline delignification kinetics. A general model applied to oxygen bleaching and kraft pulping. Tappi J. 56 (11): 108-111. Efimova, M.V., A.P. Lapan. (1975) Use of chromatographic methods in studying the products of delignification of aspenwood in a medium of phenol, Khromat. Anal. Khim. Drev. (Riga). 2: 46-50. Ekman K., O. Neste. (1991a) Procedure for recirculating phenol in a lignocellulosic materials digestion process. CA patent 1.282.714. Ekman K., O. Neste. (1991b) Procedure for separating lignin and phenol from phenol solutions. CA patent 1.284.491. Ekman, K., O. Neste. (1988) Menetelma ligniinin ja fenolin erottamiseksi fenoliliuoksista. FI patent 77061. El-Sakhawy, M., B. Lönnberg, A.A. Ibrahim, Y. Fahmy. (1996) Organosolv pulping. 4. Kinetics of alkaline ethanol pulping of wheat straw. Cellulose Chem. Technol. 30: 281-296. Engel, O., E. Wedekind. (1933) Verfahren zum aufschluss von pflanzenfaserstoffen. German patent. 581.806. Erzhanova, M.S., B.D. Daurenbekov, D.V. Sokolskii. (1977) Hydrogenation of furfuryl condensate in tetrahydrofurfuryl alcohol by a multi component fixed catalyst Gidroliznaya: Lesokhim. Porm. 3: 12-13. Ewaschuk, J.B., J.M. Naylor, W.A. Barabash, G.A. Zello. (2004) High-performance liquid chromatographic assay of lactic, pyruvic and acetic acids and lactic acid stereoisomers in calf feces, rumen fluid and urine. J. Chrom. B. 805: 347-351. Faass, G.S., J.D. Muzzy, R.S. Roberts, M.A. Bonanno. (1984) Accelerated solvent pulping process development. AICHE Ann. Mtg. (San Francisco, 25-30 November 1984), Preprints, Paper no. 54d, 32 pp. Faix, O., W. Lange, O. Beinhoft. (1984) Preliminary investigations on organosolv pulping of beechwood with a propanediol-water mixture. Holz Roh-Werkstoff. 42(7): 245-252. Fambri, L., A. Pegoretti, R. Fenner, S.D. Incardona, C. Migliaresi. (1997) Biodegradable fibres of poly(l-lactic acid) produced by melt spinning. Polymer. 38: 79-85. FAO (2010) Global Forest Resources Assessment 2010, Key findings, Updated May 10, 2010. Available at: http://foris.fao.org/static/data/fra2010/KeyFindingsen.pdf FAO (2011) Highlights on wood pulp and other fibre furnish: 1999-2009 (Wood pulp, other fibre pulp and recovered paper) FAOSTAT Forestry (2010) ForeSTAT data archives, Updated 27 July 2010. Available: http://faostat.fao.org/site/626/default.aspx#ancor FAOSTAT Resources (2009) ResourceSTAT data archives, Land, Updated 30 April 2009. Available: http://faostat.fao.org/site/377/default.aspx#ancor 55 Fischer, F., O. Wienhaus. (1972). Dimethyl sulfoxide solvent and its use in wood chemistry. Holztechnol. 13(3): 161-166. Fisher, E.W., H.J. Sterzel, G. Wegner. (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-ZZ Polym. 251: 980-990. Fogarassy, A. (1971) Process for manufacture of cellulose pulp, Ger. Pat. 2,046,944. Franzreb, J.P. (1989) Was erwartet die klassische zellstoffindustrie von den neuen herstellungsverfahren. Papier. 43(10A): V94-V97. Frazier, W.C., D.C. Westhoff. (1988) Food Microbiology. Tata-McGraw-Hill Publishers Co., New Delhi, 410 pp. Freudenberg, K., A. Janson, E. Knopf, A. Haag. (1936) Zur kenntnis des lignins. Ber. Dtsch. Chem. Gesellsch. 69: 1415-1425. Garde, A., A. Schmidt, G. Jonson, M. Andersen, A.B. Thomsen, B.K. Ahring, P. Kiel (2000) Agricultural crops and residuals as a basis for polylactate production in Denmark. Proc. Food Biopack Conf. Copenhagen, Denmark. pp. 27-29. Gewin, V. (2003) Genetically modified corn-environmental benefits and risks. PLoS Biol. 1: 15-19. Ghose, T.K., P.V. Pannir Selvam, P. Ghosh. (1983) Catalytic solvent delignification of agricultural residues. Organic catalysts. Biotechnol. Bioeng. 25(11): 2577-2590. Ghozatloo, A., J. Mohammadi-Rovshandeh, S.J. Hashemi. (2006) Optimization of pulp properties by dimethyl formamide pulping of rice straw. Cellulose Chem. Technol. 40: 659-667. Ghozatloo, A., J. Mohammadi-Rovshandeh. (2007) Organosolv pulping of rice straw by dimethylformamide and optimization of handsheet properties. Cellulose Chem. Technol. 41: 175-181. Gilarranz, M.A., F. Rodr´ıguez, A. Santos, M. Oliet, F. Garc´ıa-Ochoa, J. Tijero. (1999) Kinetics of Eucalyptus globulus delignification in a methanol-water medium. Ind. Eng. Chem. Res. 38: 3324-3332. Gilarranz, M.A., M. Oliet, F. Rodriguez, J. Tijero. (1998) Ethanol-water pulping: Cooking variables optimization. Can. J. Chem. Eng. 76: 253-260. Gilding, D.K., A.M. Reed. (1979) Biodegradable polymers for use in surgery polyglycolic/polylactic acid homo-and copolymers. Polymer. 20: 1459-1464. Gisha, E., C.K.S. Pillai. (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J. Polym. Environ. 19:637-676. Gomide, J. L. (1978a) Ethanol pulping of eucalyptus viminalis wood and chemical characterization of the pulping spent liquor, North Carolina State Univ. (Raleigh) Ph.D. Thesis, 122 pp. Gomide, J.L. (1978b) Production of cellulose pulp using the ethanol process and chemical characterization of the spent liquor, ABCP Annual Meeting (Sao Paulo). 11: 35-44. Gonzalez, M., L. Canton, A. Rodriguez, J. Labidi. (2008) Effect of organosolv and soda pulping processes on the metals content of non-woody pulps. Bioresour. Technol. 99: 6621-6625. Gonzalo, E., C. Lindgren, M. Lindstrom. (1998) Kinetics of wheat straw delignification in soda and kraft pulping. J. Wood Chem. Technol. 18: 69-82. Groot, D.B., J.EG. Dam, R.P. Zwan, K. Riet. (1994) Simplified kinetic modeling of alkaline delignification of hemp woody core. Holzforschung 48(3): 207-214. Gruber, P.R., M. O'Brien. (2002) ‘‘Polylactides. ‘‘NatureWorksTM PLA'''', in: Biopolymers. Polyesters III. Applications and Commercial Products, 1st edition, Doi, Y., A. Steinbuchel. Eds.,Wiley-VCH Verlag GmbH,Weinheim, pp. 235- 250. Gullichsen, J. (2000) Fiber line operations. In: Gullichsen, J. and Fogelholm C.-J. (Eds.) Chemical Pulping, Papermaking Science and Technology Book 6A, Fapet Oy, Finland, pp. 38-39. Göpferich, A. (1996) Mechanisms of polymer degradation and erosion. Biomaterials. 17: 103-114. Hang, Y.D., H. Hamamci, E.E. Woodams. (1989) Production of L(+)-lactic acid by Rhizopus oryzae immobilized on calcium alginate gels. Biotechnol. Lett. 11: 119-120. Hans, R.K. (2001) Syntheses and application of polylactides. Chemosphere. 43: 49-54. Hansen, S.M. (1981) Role of solvent in aqueous-organic solvent delignification of southern yellow pine. Ph.D. thesis, Univ. Alabama, 272 pp. Hansen, S.M., G.C. April. (1980) Chemical feedstocks from wood: aqueous organic alcohol treatment. ACS Meeting, Las Vegas, 24 August 1980, 8 pp. Hansen, S.M., G.C. April. (1982) Chemicals from renewable resources, hemicellulose behaviour during organosolv delignification of southern yellow pine. Chem. Eng. Comm. 19(1-3): 49-56. Hartmann, M.H., N. Whiteman. (2000) TAPPI Polymers, Laminations, & Coatings Conference, Chicago, IL, United States, pp. 467-474. Herbert, L.H. (1997) Developments in organosolv pulping- an overview. Environmentally friendly technologies for the pulp and paper industry. Raymond, A.Y., Akhtar, M., Eds.; John Wiley and Sons, Inc.; Wisconsin. pp.1-67. Herdle, L.L., L.H. Pancoast, R.H. MacClaren. (1964) Acetylation celluloses from pulping of wood in acetic acid. Tappi J. 47(10): 617-620. Heriban, V., J. Skara, E. Sturdik, J. Ilavsky. (1993) Isolation of free lactic acid using electrodialysis. Biotechnol. Tech. 7: 63-68. Hiltunen, K., V.J. Seppa, H. Mika. (1997) Effect of Catalyst and Polymerization Conditions on the Preparation of Low Molecular Weight Lactic Acid Polymers. Macromolecules. 30: 373-379. Hofvendahl, K., B. Hahn-Hägerdal. (1997) L-Lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb. Technol. 20: 301-307. Hofvendahl, K., C. Akerberg, G. Zacchi, B. Hahn-Hägerdal. (1999) Simultaneous enzymatic wheat starch saccharifiaction and fermentation to lactic acid by Lactococcus lactis. Appl. Microbiol. Biotechnol. 52: 163-169. Hofvendalh, K., H.B. Hahn. (2000) Factors affect ing the ferm entative lactic acid production from renewable resources. Enzyme Microb. Tech. 26: 87-107. Holland, S.J., B.J. Tighe. (1992) ‘‘Biodegradable Polymers'', in:Advances in Pharmaceutical Sciences, 1st edition, Academic Press London, London 1992, pp. 101-165. Holten, C.H., A. Muller, D. Rehbinder. (1971) Latic acid: properities and chemistry of lactic acid and derivatives. Weinheim: Verlag Chemie. Holtzapple, M.T., A.E. Humphrey. (1984) Effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnol. Bioeng. 26(7): 670-676. Hoo, L.H., K.V. Sarkanen, C.D. Anderson. (1983) Formation of C6C2-enol ethers in the acid-catalyzed hydrolysis of erythro-veratryl-β-(2-methoxyphenyl) ether. J. Wood Chem. Technol. 3: 223-243. Hoogsteen, W., A.R. Postema, A.J. Pennings, G.T. Brinke, P. Zugenmaier. (1990) Crystal structure, conformation and morphology of solution-spun poly(L-lactide). Fibers. 23: 634-642. Hossain, S. (1958) Action of dimethylsulphoxide on wood and sulphite pulps. Pulp Paper Mag. Can. 58(8): 127-130. Hotton, J.V. (1973) Process control in kraft pulping. Tappi J. 56(7): 97-100. Hotton, J.V. (1976) The potential of process control. Tappi J. 59(8): 48-50. Hu, Z.B., J.Q. Wang, S.F. Liu, X.S. Chai, S.F. Wang. (2009) Research progress in high boiling solvent pulping. C. Pulp Pap. 28: 58-63. Huang, G., Y. Shi. (1986) Studies on the mechanism and the kinetics of rice straw pulping. China Pulp Pap. 5(3): 35-40. Huang, G.X., J. Shi, T. Langrish. (2007) NH4OH-KOH pulping mechanisms and kinetics of rice straw. Bioresour. Technol. 98: 1218-1223. Hutmacher, D. (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int. J. Oral Maxillofac. Implants. 11: 667-678. Hyon, S.H., K. Jamshidi, Y. Ikada. (1997) Synthesis of polylactides with different molecular weights. Biomaterials. 18: 1503-1508. Ikada, Y. (1999) Polymeric Biomaterials Research. Adv. Eng. Mater. 1: 67-88. Ikada, Y., H. Tsuji. (2000) Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 21: 117-132. Ilvessalo-Pfäffli, M.S. (1995) Fiber atlas: Identification of papermaking fibres. Springer-Verlag, Berlin, Germany., pp. 269-306. Jain, R., H. Navnit, A. Shah, M. Wassem, T.C. Rhodes. (1998) Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev. Ind. Pharm. 24(8): 703-727. Jamashidi, K., S.H. Hyon, Y. Ikada. (1988) Thermal characterization of polylactides. Polymer. 29: 2229-2234. Jianxin, D., C. Ningjun, S. Cheng. (1998) Production of L-lactic acid by Rhizopus oryzae a bubble column fermenter. Appl. Biochem. Biotech. 70: 323-329. Jiménez, L., A. Rodríguez, M.J. Díaz, F. López, J. Ariza. (2004) Organosolv pulping of olive tree trimmings by use of ethylene glycol/soda/water mixtures. Holzforschung 58(2): 122-128. Jiménez, L., F. Maestre, I. Pérez. (1999) Use of butanol-water for making wheat straw pulp. Wood Sci. Technol. 33(2): 97-109. Jiménez, L., F. Maestre, M.J. De la Torre, I. Pérez. (1997) Organosolv pulping of wheat straw by use of methanol-water mixtures. Tappi J. 80(12): 148-154. Jiménez, L., I. Pérez, F. López, J. Ariza, A. Rodríguez. (2002) Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets. Bioresour. Technol. 83(2): 139-143. Jiménez, L., I. Pérez, J.C. García, A. Rodríguez. (2001) Influence of process variables in the ethanol pulping of olive tree trimmings. Bioresour. Technol. 78(1): 63-69. Jiménez, L., I. Pérez, M.J. De la Torre, F. López, J. Ariza. (2000) Use of formaldehyde for making wheat straw cellulose pulp. Bioresour. Technol. 72: 283-288. Jimenez, L., I. Perez, M.J. De La Torre, J.C. Garcia. (2000) Kraft pulping of olive wood trimmings: influence of process variables. Tappi J. 83(5): 89-90. Jiménez, L., M.J. De la Torre, F. Maestre, J.L. Ferrer, I. Pérez. (1998) Delignification of wheat straw by use of low-molecular-weight organic acids. Holzforschung 52: 191-196. Johansson, A., J.P. Sachetto, A. Roman. (1983) A new process for the fractionation of biomass. In: Strub A (ed) Energy from biomass, 2nd e.c. conference. Applied Science Publishers Ltd, Barking, pp. 868-872. Johansson, A., K. Ebeling, O. Aaltonen, P. Aaltonen, P. Ylinen. (1987) Wood pulping with aqueous tetrahydrofurfurylalcohol. Paperi ja Puu. 69(6): 500-504. Johansson, B., G.E. Miksche. (1972) Über die benzyl-arylätherbindung im lignin. II. Versuche an modellen. Acta Chem. Scand. 26: 289-308. Kaplan, D.J., J.M. Mayer, D. Ball, J. McMassie, A.L. Alien, P. Stenhouse. (1993) Fundamentals of biodegradable polymers. In Biodegradable Polymers and Packaging, Ching, C. D.L. Kaplan, E.L. Thomas. Eds.: Technomic publication: Basel, pp.1-42. Kaplan, D.L. (1998) Biopolymers from renewable resources, Springer Verlag: Berlin, 414 pp. Katzen, R., R. Fredrickson, B.F. Brush. (1980a) The alcohol pulping & recovery process. Chem. Eng. Progr. 76(2): 62-67. Katzen, R., R. Fredrickson, B.F. Brush. (1980b) Alcohol pulping appears feasible for small incremental capacity. Pulp Pap. 54(8): 144-149. Kawahima, N., S. Ogawa, S. Obuchi, M. Matsuo, T. Yagi. (2002) ‘‘Polylactic acid ‘‘LACEA'''', in: biopolymers. Polyesters iii. applications and commercial products, 1st edition, Doi, Y., A. Steinbuchel. Eds., Wiley-VCH Verlag GmbH, Weinheim, pp. 251-274. Kerr, A.J., J.M. Upichard. (1976) The kinetics of kraft pulping - regiment of a mathematical model. Appita J. 30: 48-54. Kham, L., Y. Bigot, L.M. Delmas, G. Avignon. (2005) Delignification of wheat straw using a mixture of carboxylic acids and peroxoacids. Indu. Crop Prod. 21: 9-15. Kleinert, T., K. Tayenthal. (1931) Uber neuere versuche zur trennung von cellulose und inkrusten verschiedener holzer. Angewandte Chemie. 44(39): 788-791. Kleinert, T.N. (1967) Thermal wood digestion in alcohol-water mixtures. Hokforsch. Hokverwert. 19(4): 60-65. Kleinert, T.N. (1971) Organosolv pulping and recovery process, US Pat. 3, 585,104(15.6.1971). Kleinert, T.N. (1974a) Alcohol-organosolv digestion of wood. Oesterr. Papier. 11(11): 14-19. Kleinert, T.N. (1974b) Organosolv pulping with aqueous alcohol. Tappi J. 57(8): 99-102. Kleinert, T.N. (1975a) Ethanol-water delignification of wood- rate con¬stants and activation energy. Tappi J. 58(8): 170-171. Kleinert, T.N. (1975b) Ethanol-water delignification of sizable pieces of wood. Disintegration into stringlike fiber bundles. Holzforschung 29(3): 107-109. Kleinert, T.N. (1976) Ethanol-water pulping of wood, technology and economic importance. Papier. 30(10A): V18-V24. Kleinert, T.N. (1977) Continuous pulping and recovery process for vegetable fibrous raw materials for the manufacture of pulp in organic solvent, Ger. Pat. 2, 644, 155. Kleinert, T.N., K. Tayenthal. (1931) Uber neuere versuche zur trennung von cellulose und inbrusten verschiedener holzer. Z. Angew. Chem. 44(39): 788-791. Kohn, F.E., J.W.A. Van Den Berg, G. Van De Ridder, J. Feijen. (1984) The ring-opening polymerization of D,L-lactide in the melt initiated with tetraphenyltin. J. Appl. Polym. Sci. 29: 4265-4277. Kojima, M., J. Aoi, H. Tsuchiya, T. Nagasawa. (1983) Reaction kinetics in pulping - effect on chip thickness. In Proceedings of the 1983 International Symposium on Wood and Pulping Chemistry, ISWPC; Tsukuba Science City. pp. 125-129. Korhonen, H., A. Helminen, J.V. Seppala. (2001) Synthesis of polylactide in the presence of co-initiators with different number of hydroxyl groups. Polymer. 42: 7541-7549 Koval, J., I. Slavik. (1963) Acetic acid in wood delignification. Papir Celulosa. 18: 215-216. Kozlov, N.S., A.I. Skrigan, A.M. Shishko, I.N. Abranpalskii. (1976) Method of manufacturing chemical pulp and semichemical pulp, USSR Pat. 524,877. Krieger, J. (1982) Process yields marketable biomass fractions. Chem. Eng. 31: 38. Krkoska, P., E. Majorova. (1972) Reactions of ethylene chlorohydrin with wood components. (1). Delignification of beechwood with ethylene chlorohydrin. Vyskum. Pr. Odboru Papiera Celulozy. 17: V8-10. Kubo, M., H. Yoshioka, M. Tamao, T. Ueno. (1983a) Kinetic studies of kraft pulping (Part 1) delignification rate in final phase. Jpn. Tappi. 37(7): 65-69. Kubo, M., H. Yoshioka, M. Tamao, T. Ueno. (1983b) Kinetic studies of kraft pulping (Part 3) Effect of initial phase on selectivity of delignification. Jpn. Tappi. 37(11): 33-38. Kubo, M., H. Yoshioka, M. Tamao, T. Ueno. (1983c) Kinetic studies of kraft pulping (Part 4) Delignification rate studies. Jpn. Tappi. 37(12): 1109-1115. Kulkarni, A.G., R.M. Mathur, A. Panda. (1989) Nature of spent liquors from pulping of non-wood fibrous raw material. Tappi Proc. Conf. Inter. Symp. on Wood and Pulp. Chem, Raleigh (USA), pp. 485-492. Kulkarni, R.K., E.G. Moore, A.F. Hegyeli, F. Leonard. (1971) Biodegradable poly(lactic acid) polymers. J. Biome. Mater. Res. 5: 169-181. Kurbanoglu, E.B., N.I. Kurbanoglu. (2003) Utilization for lactic acid with a new acid hydrolysis of ram horn waste. FEMS Microbiol. Lett. 225:29-34 Kuusisto, I. (2010) Pulp and paper markets after the economic crisis. China Paper Technical Conf., Shanghai, China. September 14, 2010. Kwon, S., P. Lee, E. Lee, Y. Chang, N. Chang. (2000) Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enz. Microb. Technol. 26: 209-215. Laamanen, L., K. Poppius, J. Sundquist, I. Wartiovaara, S. Kauliomaki. (1986) Bleached pulp by peroxyacid/alkaline peroxide delignification, part II, papermaking properties of peroxy pulps. Paperi ja Puu. 68(9): 622-628. Laith, A., A.K. Attila Rab; É. Polyànszky, I. Rusznàk. (1995) Kinetics of delignification in kraft pulping of wheat straw and hemp. Tappi J. 78(8): 161-164. Lapan, A.P., V.B. Chekhovskaya. (1975) Hardwood lignin, (4). Birchwood lignin. Khim. Drev. (Riga). 6: 52-56. Lavarack, B.P., G.J. Griffin, D. Rodman. (2002) The acid hydrolysis o f sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenerg. 23: 367- 380. Lehermeier, H.J., J.R. Dorgan, D. Way. (2001) Gas permeation properties of poly(lactic acid). J. Membr. Sci. 190: 243-251. Leminen, A., A. Johansson, K. Sipilä. (1996) High quality flax pulp. An opportunity for non-food agroindustrial production. In: Maijanen, A. & Hase, A. (eds.) New Catalysis for Clean Environment. 2nd Symposium of the VTT Research Programme on Chemical Reaction Mechanisms. Espoo, Finland, Jan 29-30, 1996. VTT Symposium 163. VTT. Espoo., pp. 229-233. Leopold, H. (1993) Technologische eigenschaften des Organocell-zellstoffs neuesteerkentnisse nach der inbetriebnahme der anlage in Kelheim. Papier. 47(10A): V1-V5. Lindgren, C.T., M.E. Lindström. (1996) The kinetics of residual delignification and factors affecting the amount of residual lignin during kraft pulping. J. Pulp Pap. Sci. 22: 290-295. Lindgren, C.T., M.E. Lindström. (1997) Kinetics of the bulk and residual delignification in kraft pulping of birch and factors affecting the amount of residual phase lignin. Nord. Pulp Paper Res. J. 12: 124-134 Lora, J. H., M. Cronlund, J. Powers, G. Orlowski, L. Wu. (1985) A comparative study of organosolv and kra | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/65969 | - |
dc.description.abstract | 本論文進行農林廢棄物-稻草以有機溶劑製漿法中之常壓四氫呋喃醇(tetrahydrofurfuryl alcohol, THFA)製漿法,分別探討漿料性質、脫木質素反應動力學、纖維素及半纖維素的溶出反應動力學及脫木質素、纖維素及半纖維素溶出量之經驗模式(empirical model)推導等項目,其最終目的為作為工業上製漿製程控制之依據。再者,為使所得漿料,予以轉化為生質材料,故利用製漿動力學所得之製漿製程控制最佳條件(即所得最多纖維素含量之漿料)予以製漿,再將所得漿料糖化後,利用微生物進行醱酵並生成乳酸,以評估微生物醱酵條件及乳酸生成量等。並使用所產生乳酸,進行可生物分解性塑膠--聚乳酸合成,以尋求其合成聚乳酸最適條件。 首先評估此製漿法蒸解特性、漿料化學性質及手抄紙物理性質。於漿料收率方面,此法脫木質素效率高且其於卡巴值為20時,所得收率為60%左右,較一般傳統鹼性製漿法高出15-20%或以上,且隨THFA濃度及催化劑HCl添加量的增高,脫木質化效率亦呈增加之趨勢。而此蒸煮法於蒸煮初期脫木質素效率非常高,可達75%以上。蒸煮時碳水化合物溶出率低,最高僅達23%,而其中以半纖維素較纖維素有較多的溶出量,最高可達78%。但THFA稻草漿於手抄紙之物理性質較傳統硫酸鹽製漿法(kraft pulping, KP)紙漿手抄紙之性質為差,其原因為紙漿中之單纖維強度在酸性蒸解下,導致強度較弱所造成。 於THFA/HCl製漿法脫木質素反應動力學之探討方面,稻草的THFA/HCl蒸煮過程中,可分為二相。此THFA/HCl蒸煮稻草漿活化能非常低,於phase I僅為26.5 kJ mol-1,故顯示其易脫木質素特性。於蒸煮初期,主要為脫除木質素,對於碳水化合物溶解較少,故使收率降低幅度非常少,但於phase II,即當殘餘木質素含量約< 5%時,其碳水化合物之溶出量大於脫除木質素量,導致收率降低幅度非常大。此法較一般化學製漿法具有較快脫木質素反應,且低活化能等特性,顯示本製漿法具有相當優良之蒸煮性。由KL/KC (脫木質素反應速率/碳水化合物溶出速率)及ΔL/ΔC (脫木質素量/碳水化合物溶出量)值的比較方面,均為phase I大於phase II,且於phase I時,蒸煮溫度120℃,催化劑濃度為0.020 mol L-1二值均為達最大值,顯示在蒸煮溫度為120℃時,蒸煮藥液(催化劑)其主要為攻擊木質素,無論是脫木質素速度及脫去木質素量均大於碳水化合物。 再者,為瞭解此製漿法之碳水化合物溶出舉動,故探討纖維素及半纖維素的溶出反應動力學。纖維素及半纖維素的溶出反應,均可分成二相,於纖維素phase I,纖維素溶出率非常之少,於phase II方面,當脫木質素量約為85-90%左右,隨著催化劑[HCl]濃度及蒸煮溫度增加時,纖維素溶出率有增多之現象。半纖維素溶出反應,隨著催化劑[HCl]濃度及蒸煮溫度增加時,半纖維素溶出率有增快之傾向,phase I之溶出速率均較phase II為快。再者,將所推導之動力學方程式與試驗數據相較,均呈現高度相關性(r > 0.99) ,故所推導之動力學方程式可應用於此THFA/HCl之蒸煮控制。 然而,上述所推導反應動力學方程式為一複雜及繁瑣工程,因此以簡易方式,分別推導出收率、脫木質素、纖維素及半纖維素溶出量之經驗式。於推導中得知,除纖維素含量之經驗式中,其r值呈現較低(r > 0.80)之現象之外,其餘經驗式中,其r值均呈現較高之現象(r > 0.90)。再者,將所推導之經驗式與試驗數據相較,均為在 ± 5%誤差範圍內,故由此可知,顯示二者差異非常少,故所推導之公式可應用此THFA/HCl之蒸煮控制。 最後,將製漿動力學所得之最佳條件製漿作為生物材料的前處理方法。所得漿料,經糖化後所產生醣類為原料醱酵成乳酸最佳條件為水解糖濃度60 g L-1,菌株為Lactobacillus paracasei subsp. paracase,醱酵時間72 hr。於聚乳酸合成最佳條件為反應溫度140℃,催化劑辛酸亞錫(Sn(Oct)2)濃度0.3 wt%為最佳。 | zh_TW |
dc.description.abstract | This study proceeded to pulp an agroforestry waste material, rice straw, using an atmospheric digestion by tetrahydrofurfuryl alcohol (THFA) and a hydrochloric acid catalyst. The pulp properties, delignification kinetics, cellulose and hemicellulose dissolution kinetics and derivation of empirical equations for the delignification, dissolution of cellulose and hemicellulose etc. The ultimate purposes of the study were to provide a basis for industrial pulping control of the system, and additionally to convert the pulp thus obtained to biomaterials. Henceforth, the optimal pulping conditions could be employed to produce pulp, and then the pulp was saccharified and fed to a microbial fermentation to produce lactic acid which eventually was synthesized into a biodegradable plastic of polylactic acid. And optimal conditions for synthesizing polylactic acid were sought. Firstly, the digestion characteristics, chemical properties of the pulp and handsheet physical properties of the THFA/HCl pulping were evaluated. As for the pulp yields, the method has high delignification specificity, at kappa number 20, the yield was ca. 60%, about 15-20% higher than the traditional alkaline pulping method. Furthermore, with increasing THFA concentrations, efficacies of delignification also increased. Increasing the catalyst dosage also caused an increase in delignification. During the cooking the dissolution of carbohydrate were low, at most 23%, consisted of mostly hemicelluloses, which was as high as 78% of the dissolved carbohydrates. The physical properties of the THFA pulp handsheets were inferior to those of the kraft pulp. The main reason was the damage to cellulose sustained during the acidic cooking condition. As for the delignification reaction kinetic study of THFA/HCl pulping of rice straw, 2 phases of different delignification rates were observed which were closely related to the amount of HCl and temperature. The cooking showed very low activation energy, which, in phase I and phase II, were only 26.5 kJ mol-1 and. 32.2 kJ mol-1, respectively. At phase I pulping, delignification was the main reaction with minimal dissolution of carbohydrate fractions. Consequently, the yield loss was low. In phase II, however, when the residual lignin content was less than about 5%, the dissolution of the carbohydrate was greater than the lignin removal, causing a marked reduction in pulp yield. Comparisons of KL/KC (ratio of delignification rate and rate of carbohydrate dissolution) and ΔL/ΔC (ratio of lignin removed and carbohydrate dissolved during pulping) values in phase I and II, were made. Results showed that both values were greater in phase I, and, both values reached their maxima at 120°C, and catalyst dosage of 0.020 mol L-1. Furthermore, in order to understand the behavior of carbohydrate fractions during the THFA/HCl pulping of rice straw, the dissolution kinetics of cellulose and hemicellulose were investigated. For both cellulose and hemicellulose fractions, the dissolution during pulping could be separated into two phases each. In the initial stage, or phase I, of cellulose dissolution, scarce amounts were solubilized; and in phase II, when delignification reached a level of approximately 85-90%, along with the increases in [HCl] concentration and cooking temperature, cellulose dissolution accelerated. The dissolution rate of hemicellulose, by contrast, with both increases in catalyst [HCl] concentration and cooking temperature, also accelerated; but the phase I dissolution rate was faster than the phase II rate. Comparing the experimental data with the predicted data, the pulp compositions, regardless of lignin, hemicellulose, or cellulose contents, all showed a high degree of correlation (with r > 0.99); thus proving that the derived kinetic equations were applicable to the process rationalization of THFA/HCl pulping of rice straw and in the control of pulp chemical compositions. The aforementioned reaction kinetics were complicated and tedious undertakings, however, therefore, simplified empirical equations were individually derived for the yield, delignification, and dissolution of cellulose and hemicellulose reactions. During the process, it was noted that except for the case of cellulose content which had a lower coefficient of correlation, with r > 0.80, in equations of yield, delignification and dissolution of hemicellulose, the r-values were higher (r > 0.90). In addition, the derived empirical equation produced values that all were within ±5% of the actual experimental values regardless of the yield, lignin, cellulose, or hemicellulose content. Thus, there were minor differences between the empirical and actual values, and the derived equations were adequate for use in the control of THFA/HCl pulping on rice straw. Finally, the best process control conditions were used to pulp rice straw, and the pulp was saccharified as a raw material to ferment into lactic acid. The optimal conditions of lactic acid production were found to entail a 60 g L-1 of hydrolyzed sugar solution using a microbe of Lactobacillus paracasei sub sp. paracase for 72 h. The high lactic acid production rate of this microbial strain indicated a potentially low purification cost. As for the synthesis of polylactic acid, the synthetic conditions entailed a reaction temperature of 140℃, and a catalyst stannous octanoate (Sn(Oct)2) concentration of 0.3 wt%. | en_US |
dc.description.tableofcontents | 摘要 i Summary iii 目錄 vi 表目次 x 圖目次 xii 壹、前言 1 貳、文獻回顧 8 一、非木纖維原料紙漿 8 二、有機溶劑製漿法 12 (一) 化學製漿法的回顧及現況 12 (二) 有機溶劑製漿法之現況 13 (三) 常壓有機溶劑製漿法之應用 21 1. 常壓過甲酸(peroxyformic acid)製漿法 21 2. 常壓醋酸(acetic acid)溶劑製漿法 30 3. 常壓酚溶液(phenol)製漿法 31 4. 常壓四氫呋喃醇(tetrahydrofurfurylalcohol, THFA)製漿法 33 5. 有機溶劑製漿法之選擇 37 三、製漿動力學之探討 39 (一) 木質素結構單元 39 (二) 蒸煮製漿過程之探討 40 1. 硫酸鹽法蒸煮時脫木質素的反應階段 40 2. 有機溶劑製漿之脫木質素反應階段 43 (三) 動力學研究之回顧 46 (四) 製漿動力學方程式之推導 48 1. 木質素級數之推導 48 2. 蒸解液溶劑濃度的效應 50 3、溫度效應 53 (五) 製漿動力學之應用 54 1. 蒸煮之控制 54 2. 連續式蒸解釜之設計 55 3. 延長去木質素 (extended delignification) 之應用 55 (六) 非木材纖維原料蒸煮脫木質素反應動力學 56 1. 麥稈蒸煮脫木素反應機制和動力學的研究 56 2. 稻草蒸煮脫木素反應機制和動力學研究 58 3. 甘蔗渣蒸煮脫木素反應機制和動力學的研究 59 4. 大麻及其他非木材原料蒸煮脫木素反應機制和動力學的研究 60 四、乳酸之性質與特性 61 (一) 乳酸性質及應用 61 (二) 乳酸之製備 64 (三) 微生物醱酵生成乳酸菌種的種類 67 (四) 乳酸分析方法 71 1. 高效能液相層析法 71 2. 氣相層析法 72 3. 高效毛細管電泳層析法 73 (五) 農業廢棄物的乳酸醱酵 74 五、生物可分解性塑膠 78 (一) 聚乳酸的應用及重要性 80 (二) 聚乳酸之性質與特性 82 1. 聚乳酸之光學活性 82 2. 分子量 82 3. 結晶性 84 (三) 聚乳酸之合成 85 1. 聚乳酸之合成法 85 2. 影響聚合反應之變數 88 (四) 聚乳酸之降解 89 (五) 聚乳酸之應用 91 參、材料與方法 93 一、試驗材料 93 (一) 稻草 93 (二) 試驗菌株 93 (三) 醱酵基質 93 (四) 培養基 93 (五) 藥品 93 1. 試藥 93 2. 標準品 93 二、試驗方法 94 (一). 稻草常壓四氫呋喃醇製漿法 94 1. 稻草的四氫呋喃醇製漿性評估 94 2. 稻草THFA/HCl製漿之脫木質素、碳水化合物溶出動力學及經驗式推導 94 (二) 漿料性質評估 94 (三) 漿料醣類組成分析 95 (四) 紙漿之物理性質評估 95 (五) 漿料水解糖製備 95 (六) 醱酵及醱酵液的分析 95 1. 乳酸菌醱酵 96 2. 醱酵液的分析 96 (七) 聚乳酸之合成 97 1. 環狀雙分子合成 97 2. 聚乳酸合成 98 (八) 聚乳酸平均重量分子量測定 98 肆、稻草的四氫呋喃醇製漿性評估及其紙漿力學性質評估 99 一、前言 99 二、結果與討論 101 (一) 稻草的四氫呋喃醇製漿特性 101 (二) 漿料之化學組成分析比較 109 (三) 漿料纖維觀測及物理性質分析 114 四、小結 119 伍、稻草THFA/HCl製漿之脫木質素動力學探討 120 一、前言 120 二、結果和討論 121 (一) THFA稻草製漿時對木質素及碳水化合物的攻擊選擇性 121 (二) 蒸煮階段的區分探討 123 (三) 脫木質素反應動力學 126 (四) 相轉移時間(transition time) 133 (五) 活化能之比較及探討 136 三、小結 140 陸、稻草THFA/HCl製漿之碳水化合物溶出動力學探討 141 一、前言 141 二、結果和討論 143 (一) 蒸煮階段的區分探討 143 (二) 纖維素及半纖維素反應動力學 149 1. 纖維素溶出反應動力學 149 2. 半纖維素溶出反應動力學 153 (三) 碳水化合物與木質素降解之分析 154 (四) 最適條件之探討 159 三、小結 162 柒、稻草THFA/HCl製漿之經驗式推導 163 一、前言 163 二、結果與討論 164 (一) 經驗式建立 164 1. THFA/HCl紙漿中收率經驗式的推導 166 2. THFA/HCl紙漿中木質素含量經驗式的推導 168 3. THFA/HCl紙漿中纖維素含量經驗式的推導 170 4. THFA/HCl紙漿中半纖維素含量經驗式的推導 172 5. 灰分及抽出成分含量之預測 174 (二) 預測值與實測值信賴度評估之比較 175 三、小結 180 捌、稻草THFA漿產製生物可分解性聚乳酸高分子材料 181 一、前言 181 二、結果與討論 182 (一) 不同葡萄糖濃度之各菌株產酸 182 (二) THFA漿料之水解糖產乳酸評估 187 (三) 乳酸光學異構物分析 189 (四) 聚乳酸合成 194 三、小結 199 玖、結論 200 拾、參考文獻 203 拾壹、博士班修業期間之研究成果 239 一、期刊論文 239 二、研討會論文 243 三、推廣性論文 246 拾貳、附錄 247 | zh_TW |
dc.language.iso | en_US | zh_TW |
dc.publisher | 森林學系所 | zh_TW |
dc.relation.uri | http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1212201115361700 | en_US |
dc.subject | 四氫呋喃醇 | zh_TW |
dc.subject | organosolv pulping | en_US |
dc.subject | 動力學 | zh_TW |
dc.subject | 經驗模式 | zh_TW |
dc.subject | 生物材料 | zh_TW |
dc.subject | 乳酸 | zh_TW |
dc.subject | 聚乳酸 | zh_TW |
dc.subject | tetrahydrofurfuryl alcohol | en_US |
dc.subject | kinetics | en_US |
dc.subject | empirical model | en_US |
dc.subject | biomaterial | en_US |
dc.subject | lactic acid | en_US |
dc.subject | polylactic acid | en_US |
dc.title | 稻草四氫呋喃醇製漿及動力學研究在生物材料上之開發應用 | zh_TW |
dc.title | Rice Straw Tetrahydrofurfuryl Alcohol Pulping and Its Kinetics Studies for Biomaterial Application Development | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 森林學系 |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.