Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65971
DC FieldValueLanguage
dc.contributor張上鎮zh_TW
dc.contributor黃金城zh_TW
dc.contributor林正榮zh_TW
dc.contributor劉正字zh_TW
dc.contributor.advisor李文昭zh_TW
dc.contributor.advisorWen-Jau Leeen_US
dc.contributor.author張國峻zh_TW
dc.contributor.authorChang, Kuo-Chunen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-09T09:29:09Z-
dc.date.available2014-06-09T09:29:09Z-
dc.identifier.citation1. 尤昭云、李文昭 (2006) 多元醇液化柳杉材及其在PU發泡體之應用。林產工業 25(2):143-158。 2. 吳秋昌、李文昭 (2007) 多元醇液化柳杉及麻竹之特性。林產工業 26(2):95-106。 3. 李文昭、張國峻、宋憶青、陳奕君 (2006) 柳杉之酚液化處理及其在Resol型PF樹脂製備之應用。中華林學季刊 39(4):517-530。 4. 李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。 5. 李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 6. 李文昭、張嘉方 (2004b) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23(3):239-248。 7. 李文昭、張嘉方 (2007) 異氰酸酯種類對液化木材所製造聚胺基甲酸酯發泡體性質之影響。中華林學季刊 40(3):405-416。 8. 李文昭、陳奕君、劉正字 (2007) 酚液化孟宗竹材製備Novolak型酚樹脂及其在成型物製作之應用。林業研究季刊 29(3):75-84。 9. 李文昭、劉正字(1996a)農林廢料製造木材膠合劑之研究(Ⅲ)抽出成分添加對間苯二酚膠合劑性質之影響。林產工業 15(1):109-127。 10. 李文昭、劉正字(1996b)農林廢料製造木材膠合劑之研究(Ⅳ)酚-相思樹樹皮抽出物-甲醛共聚合膠合劑之應用。林產工業 15(2):251-270。 11. 李文昭、劉正字(1996c)農林廢料製造木材膠合劑之研究(Ⅴ)酚-萃取物-甲醛共聚合樹脂膠合劑之應用。林產工業 15(4):627-639。 12. 李文昭、劉正字(1998)農林廢料製造木材膠合劑之研究(Ⅵ)酚-相思樹樹皮抽出物-甲醛共聚合樹脂之熱硬化性。林產工業 17(1):197-218。 13. 李文昭、劉正字(1999)農林廢料製造木材膠合劑之研究(Ⅶ)酚-萃取物-甲醛共聚合樹脂之熱硬化性。林產工業 18(4):383-392。 14. 李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。 15. 李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-- 杉木木材液化及液化木材膠合劑製備。林業研究季刊 24(1):11-20。 16. 李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25(3):73-86。 17. 李文昭、藍偉銓 (2004) 酚-間苯二酚-樹皮萃取物-甲醛共聚合樹脂之合成及其性質。中華林學季刊 37(4):435-444。 18. 李文昭、藍偉銓 (2007) 三階段合成法製備酚-間苯二酚-樹皮萃取物-甲醛共聚合樹脂之合成及其性質。林產工業 26(2):85-93。 19. 張上鎮、吳季玲、王升陽、張惠婷 (1997) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業 16(4):825-838。 20. 陳到達 譯 (1992) 熱分析。國立編譯館主編。台北。第11-15,161-163頁。 21. 陳奕君、李文昭、劉正字 (2006) 酚液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業 25(3):249-258。 22. 陳奕君、李文昭、劉正字 (2007) 酚液化孟宗竹製備Resol型醇溶性酚樹脂及其性質。林業研究季刊 29(2):55-66。 23. 鄒哲宗、尹華文、夏滄琪 (2004) 酚甲醛膠動力分析研究及其應用。台灣林業科學 19(4):297-310。 24. 劉正字、李文昭、江哲明 (1998a) 快速硬化型膠合劑製作結構用集成材之研究(1)-合成條件對PRF及PMAF樹脂性質之影響。林產工業 17(2):321-332。 25. 劉正字、李文昭、江哲明 (1998b) 快速硬化型膠合劑製作結構用集成材之研究(Ⅱ)-樹皮萃取物在快速硬化型膠合劑之應用。中華林學季刊 31(3):297-305。 26. 劉正字、李文昭、江哲明 (1999) 快速硬化型膠合劑製作結構用集成材之研究(Ⅲ)-蜜月型膠合劑之應用。林產工業 18(3):297-310。 27. 劉正字、林正榮 (1986a) 結構用集成材膠合劑之研究(第一報)-RPF膠之合成及其性質之測定。林產工業5(4):15-27。 28. 劉正字、林正榮 (1986b) 結構用集成材膠合劑之研究(第二報)-RPF膠製造杉木集成材試驗。農林學報35(2):147-158。 29. 薛敬和 編譯 (1986) 黏著劑全書-材料與技術。高立圖書有限公司。台北。第679頁。 30. Alma, M. H. and M. A. Baştürk (2001) Cocondensation of NaOH-catalyzed liquefied wood wastes, phenol and formaldehyde for the production of resol-type adhesives. Ind. Eng. Chem. Res. 40:5036-5039. 31. Alma, M. H. and M. A. Baştürk (2006) Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Ind. Crops Prod. 24:171-176. 32. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996a) Phenolation of wood using oxalic acid as a catalyst:effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61:675-683. 33. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996b) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak resin. Holzforschung 50:85-90. 34. Barth, B. P. (1977) Phenolic Resin Adhesives. In” Handbook of Adhesives.” Ed. Skeist, I. Van Nostrand Reinhold Comp. New York. pp.382-423. 35. Byrne, C. E. and D. C. Nagle (1996) Carbonization of wood for advanced materials applications. Carbon 35:259-266. 36. Christiansen, A. W. and L. Gollob (1985) Differential scanning calorimetry of phenol-formaldehyde resols. J. Appl. Polym. Sci. 30:2279-2289. 37. Ebewele, R. O. and J. A. Koutsky (1986) Relationship between phenolic adhesive chemistry and adhesive joint performance:effect of filler type on fraction energy. J. Appl. Polym. Sci. 31:2275-2302. 38. Gardziella, A., L. A. Pilato and A. Knop (1999) Phenolic resins:Chemistry, Applications, Standardization, Safety and Ecology. Springer. New York. pp. 24-82. 39. Kobayashi, M., K. Tukamoto and B. Tomita (2000) Application of liquefied wood to a new resin system synthesis and properties of liquefied wood/epoxy resins. Holzforschung 54:93-97. 40. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53:617-622 41. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157. 42. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass and Bioenergy 21:381-390. 43. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77:33-40. 44. Lee, Y. K., D. J. Kim, H. J. Kim, T. S. Hwang, M. Rafailovich and J. Sokolov (2003) Activation energy and curing behavior of resol- and novolac- type phenolic resins by differential scanning calorimetry and thermogravimetric analysis. J. Appl. Polym. Sci. 89:2589-2596. 45. Lee, S. H., Y. Teramoto and N. Shiraishi(2002a)Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472. 46. Lee, S. H., Y. Teramoto and N. Shiraishi (2002b) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to novolak-type phenolic resin. J. Appl. Polym. Sci. 83:1473-1481. 47. Lee, S. H. and S. Wang (2005) Effect of water on wood liquefaction and the properties of phenolated wood. Holzforschung 59:628-634. 48. Lin, L., Y. Yao and N. Shiraishi (2001a) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis.Ⅰ.identification of the reaction products. Holzforschung 55:617-624. 49. Lin, L., S. Nakagame, Y. Yao, M. Yoshioka and N. Shiraishi (2001b) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Ⅱ. reaction behavior and pathways. Holzforschung 55:625-630. 50. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1997) Molecular weights and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64:351-357. 51. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydr. Polym. 57:123-129. 52. Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1994) Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J. Appl. Polym. Sci. 52:1629-1636. 53. Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1995) Preparation and properties of phenolated wood/pheol/formaldehyde cocondensed resin. J. Appl. Polym. Sci. 58:1297-1304. 54. Luukko, P., L. Alvila., T. Holopainen., J. Rainio and T. T. Pakkanen (2001) Effect of alkalinity on the structure of phenol-formaldehyde resol resins. J. Appl. Polym. Sci. 82:258-262. 55. Markovic, S., B. Dunjic, A. Zlatanic and J. Djonlagic (2001) Dynamic mechanical analysis study of the curing of phenol-formaldehyde novolak resin. J. Appl. Polym. Sci. 81:1902-1913. 56. Pan, H., T. F. Shupe and C. Y. Hse (2007) Characterization of liquefied wood residues from different liquefaction conditions. J. Appl. Polym. Sci. 105:3739-3746. 57. Pandey, K. K. (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 71:1969-1975. 58. Park, B. D. and B. Riedl (2000) 13C-NMR study on cure-accelerated phenol-formaldehyde resins with carbonates. J. Appl. Polym. Sci. 77:841-851. 59. Pavia, D. L., G. M. Lampman and G. S. Kriz (2001) Introduction to Spectroscopy. Third Edition. Thomson Learning. America. pp.41-47. 60. Pizzi, A. and D. G. Roux (1978) The chemistry and development of tannin-based weather- and boil-proof cold-setting and fast-setting adhesives for wood. J. Appl. Polym. Sci. 22:1945-1954. 61. Pu, S. and N. Shiraishi (1993) Liquefaction of wood without a catalyst I. Time course of wood liquefaction with phenols and effects wood/phenol ratios. Mokuzai Gakkaishi 39(4):446-452. 62. Rayner, C. A. A. (1967) Synthetic organic adhesives. In” Adhesion and Adhesives.” Ed. R. Houwink and G. Salomon. Elsevier Publishing Company. pp.230-239. 63. Scopelitis, E. and A. Pizzi (1993) The chemistry and development of branched PRF wood adhesives of low resorcinol content. J. Appl. Polym. Sci. 47:351-360. 64. Thigpen, P. N. and W. L. Berry (1982) Liquid fuel from wood by continuous operation of the albany, oregon biomass liquefaction facility. Energy from Biomass and Wastes Ⅵ. Lake Buena Vista pp.1057-1095. 65. Trick, K. A. and T. E. Saliba (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33:1509-1515. 66. Waage, S. K., D. J. Gardner and T. J. Elder (1991) The effects of fillers and extenders on the cure properties of phenol-formaldehyde resin as determined by the application of the thermal techniques. J. Appl. Polym. Sci. 42:273-278 67. Yamada., T. and H. Ono (2001) Characterization of the products resulting from ethylene glycol liquefaction cellulose. J. Wood Sci. 47:458-464. 68. Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour. Technol. 97:313-321.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/65971-
dc.description.abstract本研究將柳杉(Cryptomeria japonica)木材以酚或酚/間苯二酚混合液為溶劑,H2SO4為催化劑進行液化處理,並將其液化產物及酚液化柳杉為基質之Resol型PF樹脂與RF樹脂混合調配成聚摻合樹脂,另將液化產物與甲醛反應製備成液化柳杉為基質之共聚合樹脂,探討此含間苯二酚之聚摻合樹脂及共聚合樹脂之常溫膠化特性、膠合性能與硬化樹脂之熱性質。由試驗結果得知,添加間苯二酚之混合液對木材之液化效果降低,其液化產物之殘渣率及黏度較採用酚為溶劑者大幅提高。RF樹脂中添加液化柳杉或PF樹脂調配成聚摻合樹脂時,隨添加物比例增加,其膠化時間縮短;其中添加液化柳杉者,其硬化樹脂之耐溶劑試驗之重量保留率降低,而添加PF樹脂者則不受其影響;硬化聚摻合樹脂之TGA熱重分析顯示,隨液化木材含量增加,其聚摻合樹脂耐熱性降低;膠合強度試驗結果顯示,RF樹脂與酚液化柳杉S1製備聚摻合樹脂,在RF/液化柳杉S1重量混合比50/50時,其膠合強度及木破率可符合CNS 11031標準之要求,而RF樹脂與酚/間苯二酚液化柳杉S2混合之聚摻合樹脂在RF/液化柳杉S2重量混合比30/70時仍具有良好之常態膠合強度,然其木破率偏低;而與酚液化柳杉為基質之PF樹脂聚摻合時,在RF樹脂所製備聚摻合樹脂在RF/PF重量混合比30/70時,其膠合強度與木破率均可符合要求。酚液化柳杉應用於常溫硬化型共聚合樹脂合成時,較佳之合成條件為酚液化木材與福馬林先於鹼性條件下合成Resol型PF樹脂,再添加間苯二酚行第二階段之共聚合反應,其共聚合樹脂之膠化時間較傳統PRF樹脂大幅度縮短,硬化樹脂其溶出試驗重量保留率達95%以上,在間苯二酚添加量30%之條件下,其共聚合樹脂之膠合強度與PRF樹脂相當。酚/間苯二酚液化柳杉應用於常溫硬化型共聚合樹脂合成時,宜採一般RF樹脂之在酸性條件下合成法,且其適當之甲醛與液化木材之莫耳比為0.25/1,其中以酚/間苯二酚重量比50/50之混合液為液化溶劑者,其所製備之共聚合樹脂有較佳之常態及耐水膠合強度。zh_TW
dc.description.abstractIn this study, wood of Cryptomeria japonica was liquefied in phenol or phenol/resorcinol mixture with H2SO4 as a catalyst. The liquefied wood or PF resin prepared from the liquefied wood were mixed with RF resin to prepare the polyblending resins. In addition, the liquefied wood was reacted with formaldehyde to prepare the liquefied C. japonica based-copolymers resins. The room-temperature setting properties, bonding strength and thermal properties of these polyblending resins and copolymer resins which containing the resorcinol were investigated. The results showed that using the mixture of phenol with resorcinol as a solvent had a worse liquefaction effect than phenol. Those liquefied products had a higher residue content and viscosity. The gel time of polyblend resins were more shortened as the rate of liquefied C. japonica or PF resin added into RF resin increased. The weight retention of cured polyblending resins after solvent resistance test was decreased for which blending with liquefied C. japonica, but it had not be influenced for which blending with PF resin. The TGA analysis of the cured polyblending resin showed that increasing the amount of liquefied wood added would decrease the heat-resistance. The polyblending resin prepared from RF resin blending with the liquefied wood S1 at a weight ratio of 50/50 had the bonding strength and wood failure conformed to the request of the CNS 11031 standard. On the other hand, the polyblending resin prepared by blending RF with liquefied wood S2, that liquefied with phenol/resorcinol cosolvent, had a good dry bonding strength at the weight ratio of RF/S2 of 30/70, but with a low wood failure. However, if the polyblend resin was prepared by blending RF with PF, both the bonding strength and wood failure could fit the request of CNS standard at the weight ratio of 30/70. When the phenol liquefied C. japonica was used to prepare the room-temperature setting copolymer resins, reacted the liquefied wood with formaldehyde in an alkali condition to form a resol-type PF resin, and then added the resorcinol to undergo the copolymerization would be a more suitable synthesis method. The gel time of this copolymer resin was substantially shortened than traditional PRF resins, and the cured copolymer resins had high weight retention at dissolve testing. The copolymer resin with 30% of resorcinol had bonding strength the same as traditional PRF resins. When phenol/resorcinol liquefied C. japonica was used to prepare the room-temperature setting copolymer resins, synthesized under acid condition using the method like for preparation the traditional RF resin would be more suitable. But the molar ratio of formaldehyde to liquefied wood should be set as 0.25/1. Wherein, the copolymer resin that prepared from the liquefied wood that with 50/50 of phenol/resorcinol as a solvent had the best dry and wet bonding strength.en_US
dc.description.tableofcontents摘要..................................................................i Summary.............................................................ii 目錄.................................................................iv 圖目次...............................................................vi 表目次............................................................ xiii 第一章 前言..........................................................1 第二章 文獻回顧......................................................3 Ⅰ、生物質溶劑液化之機制及其在合成樹脂製備之應用...................3 Ⅱ、酚醛樹脂之合成機制及其硬化機制.................................9 Ⅲ、熱分析於樹脂性質研究之應用....................................13 第三章 酚/間苯二酚混合液液化柳杉之性質..............................17 Ⅰ、材料與方法....................................................17 (Ⅰ) 試驗材料...................................................17 (Ⅱ) 試驗方法...................................................18 Ⅱ、結果與討論....................................................20 (Ⅰ) 酚/間苯二酚液化柳杉之性質..................................20 (Ⅱ) 液化柳杉之FT-IR光譜分析...................................22 (Ⅲ) 液化柳杉之分子量及分子量分布...............................26 (Ⅳ) 液化柳杉TGA熱分析.........................................30 第四章 RF樹脂與液化柳杉及其所合成Resol型PF樹脂混合製備聚摻合樹脂...32 Ⅰ、材料與方法.....................................................32 (Ⅰ) 試驗材料...................................................32 (Ⅱ) 試驗方法...................................................33 Ⅱ、結果與討論.....................................................35 (Ⅰ) 合成樹脂之性質..............................................35 (Ⅱ) 聚摻合樹脂之膠化特性........................................35 (Ⅲ) 聚摻合樹脂膠化性之DSC分析..................................40 (Ⅳ) 硬化聚摻合樹脂之DSC熱性質..................................45 (Ⅴ) 硬化聚摻合樹脂之TGA熱性質.................................47 (Ⅵ) 聚摻合樹脂之膠合性質........................................53 第五章 酚/間苯二酚液化柳杉-甲醛共聚合樹脂製備及其性質...............56 Ⅰ、材料與方法.....................................................56 (Ⅰ) 試驗材料....................................................56 (Ⅱ) 試驗方法.... ...............................................57 Ⅱ、結果與討論.....................................................61 (Ⅰ) 共聚合樹脂之基本性質........................................61 (Ⅱ) 共聚合樹脂膠化性之DSC分析..................................64 (Ⅲ) 硬化共聚合樹脂之DSC熱性質..................................70 (Ⅳ) 硬化共聚合樹脂之TGA熱性質.................................72 (Ⅴ) 共聚合樹脂膠合性質..........................................77 第六章 結論.........................................................79 參考文獻............................................................81zh_TW
dc.language.isoen_USzh_TW
dc.publisher森林學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200817052500en_US
dc.subjectCopolymer resinen_US
dc.subject共聚合樹脂zh_TW
dc.subjectCryptomeria japonicaen_US
dc.subjectPhenol liquefied wooden_US
dc.subjectPolyblending Resinen_US
dc.subjectRoom-temperature setting adhesiveen_US
dc.subject柳杉zh_TW
dc.subject酚液化木材zh_TW
dc.subject聚摻合樹脂zh_TW
dc.subject常溫硬化型膠合劑zh_TW
dc.title酚/間苯二酚液化柳杉製備常溫硬化型間苯二酚樹脂膠合劑zh_TW
dc.titleCold-Setting Resorcinol Resin Adhesives Prepared from Phenol/Resorcinol Liquefied Cryptomeria japonicaen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:森林學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.