Please use this identifier to cite or link to this item:
標題: 液化木竹材以共聚合法製備雙酚A型環氧樹脂及其性質
Preparation and Properties of Bisphenol A Type Epoxy Resins by Copolymerization with Liquefied Wood and Bamboo
作者: 吳秋昌
Wu, Chiou-Chang
關鍵字: Adhesives;膠合劑;Copolymerization;Curing reaction;Epoxy resins;Liquefied wood;Moldings;共聚合反應;硬化反應;環氧樹脂;液化木材;成型物
出版社: 森林學系所
引用: 1. 李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛樹脂木材膠合劑。林產工業20 (3):205-214。 2. 李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-杉木木材液化及液化木材膠合劑製備。林業研究季刊 24 (1):11-20。 3. 李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業22 (3):205-214。 4. 李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25 (3):73-86。 5. 李文昭、劉正字、侯家翔 (2004) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23 (1):43-53。 6. 李文昭、張國峻、宋憶青、陳奕君(2006) 柳杉之酚液化處理及其在Resol 型PF 樹脂製備之應用。中華林學季刊 39 (4):517-530。 7. 吳秋昌、李文昭 (2008) 多元醇液化麻竹-環氧樹脂製備聚摻合樹脂及其膠合性能。林產工業 27 (1):31-40。 8. 陳奕君、李文昭、劉正字 (2007) 酚液化孟宗竹製備Resol 型醇溶性酚樹脂及其性質。林業研究季刊 29 (2):55-66。 9. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.11-19;129。 10. 張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13 (1):11-18。 11. 謝正悅、林慶炫、王春山 (2000) 非鹵素難燃電子材料-含磷環氧樹脂。科學發展月刊28 (11):843-850。 12. 薛敬和 編譯 (1986) 黏著劑全書。高立圖書有限公司。 pp.705-709;729-733。 13. 小林正彥 (2005) 木材の多価アコール系液化とその应用。木材工業 60 (5):202-206。 14. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996a) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak. Holzforschung 50: 85-90. 15. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996b) Phenolation of wood using oxalic acid as a catalyst : effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61: 675-683. 16. Alma, M. H. and M. A. Basturk (2006) Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Ind. Crop. Prod. 24: 171-176. 17. Byrne, C. E. and D. C. Nagle (1996) Carbonization of wood for advanced materials applications. Carbon 35:259-266. 18. Cao, Y., Y. Shao, J. Sun and S. Lin (2003) Mechanical properties of an epoxy resin toughened by polyester. J. Appl. Polym. Sci. 90: 3384-3389. 19. Fleming, W. W. and S. Jose (1985) Carbon-13 NMR characterization of DGEBPA epoxy resins. J. Appl. Polym. Sci. 30: 2853-2862. 20. Gao, Y. and Y. Yu (2003) The synergistic effect of dicyandiamide and resorcinol in the curing of epoxy resins. J. Appl. Polym. Sci. 89: 1869-1874. 21. Garea, S.-A., A.-C., Corbu, C. Deleanu and H. Iovu (2006) Determination of the epoxide equivalent weight (EEW) of epoxy resins with different chemical structure and functionality using GPC and 1H-NMR. Polym. Test. 25: 107-113. 22. Ge, J. J. and K. Sakai (1993) Compressive properties and biodegradabilities of polyurethane foams derive condensed tannin. Mokuzai Gakkaishi 39: 801-806. 23. Ge, J. J. and K. Sakai (1996) Synthesis of biodegradable of polyurethane foams from the bark Acacia mearnsii. Mokuzai Gakkaishi 42: 87-94. 24. Ge, J., X. Shi, M. Cai, R. Wu and M. Wang (2003) A novel biodegradable antimicrobial PU foam from wattle tannin. J. Appl. Polym. Sci. 90: 2756-2763. 25. Ge, J., W. Zhong, Z. Guo, W. Li and K. Sakai (1999) Biodegradable polyurethane materials from bark and starch. I. Highly resilient foams. J. Appl. Polym. Sci. 77: 2575-2580. 26. Hassan, E. B., M. Kim and H. Wan (2009) Phenol-formaldehyde-type resins made from phenol-liquefied wood for the bonding of particleboard. J. Appl. Polym. Sci. 112: 1436-1443. 27. Ho, T. H. (2000) Synthesis of naphthalene containing aralkyl novolac epoxy resins for electronic application. Macromol. Mater. Eng. 283: 57-61. 28. Kazanci, M. (2004) Carbon fiber reinforced microcomposites in two different epoxies. Polym. Test. 23: 747-753. 29. Kobayashi, M., K. Tukamoto and B. Tomita (2000) Application of liquefied wood to a new resin system-synthesis and properties of liquefied wood/epoxy resins. Holzforschung 54: 93-97. 30. Kobayashi, M., Y. Hatano and B. Tomita (2001) Viscoelastic properties of liquefied wood/epoxy resin and its bond strength. Holzforschung 55: 667-671. 31. Kobayashi, M., T. Asano, M. Kajiyama and B. Tomita (2004) Analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 50: 407-414. 32. Kurimoto, Y., M. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622. 33. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74: 151-157. 34. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane film prepared from the liquefied wood. Biomass and Bioenergy 21: 381-390. 35. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40. 36. Lambuth, A. L. (1988) Adhesives from renewable resources historical perspective and wood industry needs. pp. 1-10 In R. W. Hemingway, A. H. Connner and S. J. Branham, eds. Adhesives from renewable resources. American Chemical Society. Washington, DC. 37. Lee, W. J. and Y. C. Chen (2008) Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. Bioresource Technol. 99: 7247-7254. 38. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 39. Lee, W. J. and C. T. Liu (2003) Preparation of liquefied bark-based resol resin and its application to particleboard. J. Appl. Polym. Sci. 87: 1837-1841. 40. Li, Y. and S. Mao (1996a) Study on the properties and application of epoxy resin/polyurethane semi-interpenetrating polymer networks. J. Appl. Polym. Sci. 61: 2059-2063. 41. Li, Y. and S. Mao (1996b) A study on the glass transition behavior and morphology of semi-interpenetrating polymer networks J. Polym. Sci. Part A Polym. Chem. 34: 2371-2375. 42. Li, M. S., C. C. M. Ma, M. L. Lin and F. C. Chang (1997) Chemical reaction occurring during the preparation of polycarbonate-epoxy blends. Polymer 38: 4903-4913. 43. Lin, L., S. Nakagame, Y. Yao, M. Yoshioka and N. Shiraishi (2001a) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part 2 Reaction behavior and pathways. Holzforschung 55: 625-630. 44. Lin, L., Y. Yao and N. Shiraishi (2001b) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part 1. Identification of the reaction products. Holzforschung 55: 617-624. 45. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1997) Molecular weights and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64: 351-357. 46. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydrate Polym. 57: 123-129. 47. Lin-Gibson, S., V. Baranauskas, J. S. Riffle and U. Sorathia (2002) Cresol novolac-epoxy networks: properties and processability. Polym. 43: 7389-7398. 48. Liu, Y. L., G. H. Hsiue, R. H. Lee and Y. S. Chiu (1997) Phosphorus-containing epoxy for flame retardant. III: Using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 63: 895-901. 49. Liu, Y. L., C. Y. Hsu, W. L. Wei and R. J. Jeng (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polym. 44: 5159-5167. 50. Liu, Y., Z. Du, C. Zhang, C. Li and H. Li (2007) Curing behavior and thermal properties of multifunctional epoxy resin with methylhexahydrophthalic anhydride. J. Appl. Polym. Sci. 103: 2041-2048. 51. O’Connor, J. C. and R. E. Chapin (2003) Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 75: 2099-2123. 52. Okada, H., T. Tokunaga, X. Liu, S. Takayanagi, A. Matsushima and Y. Shimohigashi (2008) Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ. Health Perspect. 116: 32-8. 53. Pan, H., T. F. Shupe and C. Y. Hse (2007) Characterization of liquefied wood residues from different liquefaction conditions. J. Appl. Polym. Sci. 105:3739-3746. 54. Park, S. J. and J. S. Jin (2001) Energetic studies on epoxy polyurethane interpenetrating polymer networks. J. Appl. Polym. Sci. 82: 775-780. 55. Pavia, B. D., G. M. Lampman and G. S. Kriz (2001) Introduction to Spectroscopy. Third Edition. Thomson Learning. America. pp. 41-47. 56. Rigail-Ceden˜o, A. and C.S.P. Sung (2005) Fluorescence and IR characterization of epoxy cured with aliphatic amines. Polym. 46: 9378-9384. 57. Sun, J. X., R. C. Sun, X. F. Sun and Y. Q. Su (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohyd. Res. 339: 291-300. 58. Wang, X. and Q. Zhang (2003) Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. European Polym. J. 40: 385-395. 59. Wu, C. C. and W. J. Lee (2011) Curing behavior and adhesion properties of epoxy resin blended with polyhydric alcohol-liquefied Cryptomeria japonica wood. Wood Sci. Technol. 45: 559-571. 60. Xie, T. and F. Chen (2005) Fast liquefaction of bagasse in ethylene carbonate and preparation of epoxy resin from the liquefied product. J. Appl. Polym. Sci. 98: 1961-1968. 61. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70: 61-67. 62. Yao, Y., M. Yoshioka and N. Shiraishi (1995) Rigid polyurethane foams from combined liquefied mixtures wood and starch. Mokuzai Gakkaishi 41: 659-668. 63. Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foam from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949. 64. Zhai, L., G. Linga, J. Li and Y. Wang (2006) The effect of nanoparticles on the adhesion of epoxy adhesive. Mater. Lett. 60: 3031-3033. 65. Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresource Technol. 97: 313-321.
本研究將麻竹(Dendrocalamus latiflorus Munro; Ma bamboo)及柳杉(Cryptomeria japonica; Japanese cedar)以聚乙二醇(Polyethylene glycol; PEG)/丙三醇(Glycerol)、酚(Phenol)或酚/雙酚A(Bisphenol A)為溶劑進行液化處理,並將所得液化產物藉由二階段或一階段共聚合反應製備含生質物共聚合環氧樹脂,其中二階段法將雙酚A與環氧氯丙烷(Epichlorohydrin)反應形成雙酚A型環氧樹脂(Diglycidyl ether of bisphenol A; DGEBA)預聚物,再導入多元醇或酚液化產物形成共聚合環氧樹脂,一階段法則利用酚/雙酚A液化產物與環氧氯丙烷反應形成共聚合環氧樹脂,探討各條件合成共聚合環氧樹脂之硬化反應性、硬化樹脂熱裂解行為,及其做為成型材料製造原料及木材膠合劑之可行性。由結果顯示不同溶劑對木質材料均具有良好之液化效果。以液化木質材料所合成共聚合環氧樹脂以添加三乙基四胺(TETA)為架橋硬化劑時具備常溫硬化性,其硬化過程為一放熱現象;採二階段合成法製備共聚合環氧樹脂時,以酚液化麻竹為原料具最佳之反應性;而利用酚/雙酚A液化柳杉為原料,並以一階段合成法所製備之共聚合環氧樹脂均具有良好之硬化反應性。TGA及FI-IR分析顯示硬化樹脂在加熱至約300°C時開始發生明顯熱裂解,其結構中-OH、-CH3、-CH2-及C-O-C斷裂,並釋出芳香環化合物,而加熱溫度300°C以上時為結構中醚鍵鍵結快速裂解,同時進行芳香環化,更高溫時則行芳香環脫氫及碳化反應;熱裂解氣體之GC-MS分析顯示,隨加熱溫度提高,其產出之熱裂解氣體組成趨於複雜。環氧樹脂及共聚合環氧樹脂以順丁烯二酸酐(MA)為架橋硬化劑時,其硬化反應須在加熱條件下進行,然DSC分析顯示其硬化過程與利用TETA為架橋硬化劑有相同程度之架橋反應。以TETA為硬化劑之環氧樹脂成型材之靜曲強度優於以MA為硬化劑者,添加填料者對其機械性能無改善效果。含生質物之共聚合環氧樹脂(C-10/0)可應用於木材膠合,其膠合材經反覆煮沸後之膠合強度與傳統環氧樹脂相當。
其他識別: U0005-1608201118033100
Appears in Collections:森林學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.