Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65981
標題: 多階段炭化對孟宗竹炭基本性質及吸附能力之影響
Effect of Multiple-step Carbonization on the Basic Properties and Adsorption Capacities of Moso Bamboo Charcoals
作者: 許玲瑛
Hsu, Ling-Ying
關鍵字: Bamboo charcoal;竹炭;Multiple-step carbonization;Specific surface area;COD;Iodine number;多階段炭化;比表面積;化學需氧量;碘值
出版社: 森林學系所
引用: 王松永、洪崇彬、王俊凱、汪偉杰、賴華雄(2004)竹材之活化製程與性能檢測。工業材料雜誌205:86-96。 行政院環保署環境檢驗所(2007)水中化學需氧量檢測方法 - 密閉迴流滴定法,NIEA W517.51B。 林裕仁、黃國雄、王瀛生(2003)淺談竹炭之生產與利用。林業研究專訊 10(3):23-27。 林裕仁、黃國雄、余欣怡(2004)竹炭窯建造之成本分析。中華林學季刊 37(2):195-204。 林文清(2007)微晶纖維素廢料之活性碳熱裂解資源化研究。國立中央大學環境工程研究所碩士論文。第11-23頁。 谷雲川、王益真(1990)台灣竹材製漿之回顧與展望。林產工業叢書11:195-202。 邱誌忠(2004)半導體產業高濃度含砷廢水之處理 - 化學沉降法與活性炭吸附法之評估。國立中興大學環境工程學系碩士論文。第18-20,96-106頁。 洪崇彬(2002)木質廢棄物製造之碳化材的基本性質與利用。國立台灣大學森林學研究所博士論文。第63-68頁。 洪崇彬(2004)木、竹炭在生活上的應用。林業研究專訊 11(3):18。 翁儷芯(2005)木陶瓷製備條件對其基本性質及石墨化度行為之影響。國立台灣大學森林環境暨資源學系博士論文。第47-75頁。 陳陵援(1996)儀器分析。三民書局。第73-93頁。 陳嘉明(2000)生物質木材膠合劑。國立編譯館主編。第4頁。 陳文樟(2006)簡介活性碳製造、分類及應用。中鼎月刊 321:17-21。 郭嘉雯(2004)竹醋液基本性質及其抗植物病原細菌之探討。國立中興大學森林學系碩士論文。第6頁。 黃彪、高尚愚(2004)木質炭化物對揮發性有機污染物吸附性能的研究。林業科學40(3):140-143。 黃鐙麒(2007)燃煤火力電廠COD問題之探討。國立中興大學環境工程學系碩士論文。第18-20頁。 賀孝雍 譯(1989)有機化合物之光譜鑑別法。眾光文化事業有限公司。第95-135頁。 彭兆群(1999)碳纖維吸附材應用在水質處理的探討。國立台灣科技大學纖維及高分子工程研究所碩士論文。第30-39頁。 楊萬發 譯(1987)水及廢水處理化學。國立編譯館。第207-228,391頁。 經濟部工業局工業污染防治技術服務團(1987)工業廢水活性碳處理。經濟部工業污染防治技術手冊之七,財團法人中國技術服務社。 蔡明秀(2006)竹炭製備條件對重金屬離子吸附效應。國立台灣大學森林環境暨資源學系碩士論文。第7-16,22-24,38-46頁。 潘泰安(2003)以農業廢棄物為原料合成微孔吸附劑之資源化研究。國立高雄第一科技大學環境與安全衛生工程所碩士論文。第3-34頁。 謝建德(1998)活性碳孔隙結構與製備條件對液相吸附的影響。私立中原大學化學工程學系研究所碩士論文。第1-88頁。 中華民國財政部關稅總局(2007)統計資料庫查詢-我國進出口貨物數量與價值(正本)查詢表(按年度)。http://www.customs.gov.tw/。 行政院農業委員會林務局(2006)林務局年報-台灣森林資源現況。http://www.forest.gov.tw/。 北村寿宏、片山裕之(2001)スギ材から製造した木炭の比表面積に及ぼす炭化條件の影響。木材学会誌 47:164-170。 平田利美(1995)木材およびセルロ-スの熱分解速度論。木材学会誌 41(10):879-886。 石原茂久(1996)木質系炭素材料素材開発の新しい展開。木材学会誌 42(8):717-723。 石原茂久(1999) 機能性炭素材料としての木炭。社団法人日本材料学会誌 48(5):473-482。 石原茂久(2002)新しい機能性炭素材料素材としての木炭の利用(Ⅰ)。木材工業 57(1):2-7。 松永一彥、新村孝善、西 和枝、神野好孝、國生徹郎(1999)モウソウチクの炭化生成物と竹酢液の物性について。鹿児島県工業技術センター研究報告13:23-30。 稻垣道夫、大谷杉郎、大谷朝男共著,賴耿陽 譯(1983)碳纖維材料入門。復漢出版社。第25-26頁。 藤原 敏、嵨 一徹、千葉喬三(2003)竹炭の基本的特性と調湿能。木材学会誌 49(5):333-341。 Bansal, R. C., D. Jean-Baptiste and F. Stoeckli (1988) Active carbon. Marcel Decker. INC., New York and Basel: 163-258. Boehm, H. P. (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32: 759-769. Byrne, C. E. and D. C. Nagle (1997) Carbonization of wood for advanced materials applications. Carbon 35(2): 259-266. Demirbaş, A. (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers. Mgmt. 41: 633-646. Demirbaş, A. (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Mgmt. 42: 1357-1378. Devi, R., R. and P. Dahiya (2008) COD and BOD removal from domestic wastewater generated in decentralised sectors. Bioresource Technol. 99:344–349. Dubinin, M. M. and G. M. Plavnik (1968) Microporous structures of carbonaceous adsorbents. Carbon 6(2): 183-192. Fuwape, J. A. (1996) Effects of carbonization temperature on charcoal from some tropical trees. Bioresource Technol. 57:91-94. Gomez-Serrano, V., J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle and C. Valenzuela-Calahorro (1996) FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrolysis 36: 71-80. Juntgen, H. (1977) New applications for carbonaceous adsorbents. Carbon 15(5): 273-283. Macias-García, A., M. J. Bernalte García, M. A. Díaz-Díez and A. Hernández Jiménez (2004) Preparation of active carbons from a commercial holm-oak charcoal: study of micro- and meso-porosity. Wood Sci. Technol. 37: 385-394. Merchant, A. A. and M. A. Petrich (1993) Pyrolysis of scrap tires and converseon of chars to activated carbon. AIChE J. 39: 1370-1376. Nishimiya, K., T. Hata, Y. Imamura and S. Ishihara (1998) Analysis of chemical structure of wood charcoal by χ-ray photoelectron spectroscopy. J. Wood Sci. 44: 56-61. Park, S. J. and K. D. Kim(2001)Influence of activation temperature on adsorption characteristics of activated carbon fiber composites. Carbon 39: 1741-1746. Pastor-Villegs, J., C. J. Duran-Valle, C. Valenzuela-Calahorro and V. Gomez-Serrano (1998) Organic chemical structure and structural shrinkage of chars prepared from rockrose. Carbon 36(9): 1251–1256. Pastor-Villegas, J., J. M. Meneses Rodriguez , J. F. Pastor-Valle and M. Garcia Garci (2007) Changes in commercial wood charcoals by thermal treatments. J. Anal Appl. Pyrolysis 80507-514. Pulido-Novicio, L., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara and Y. Imamura (2001) Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 47:48-57. Radovic, L. R. and F. Rodriguez-Reinoso (1997) Carbon materials in catalysis. Chem. Phys. Carbon 25: 243-359. Rodriguez-Reinoso, F. (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3): 159-175. Ryu, Z., J. Zheng, M. Wang and B. Zhang (1999) Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 37: 1257-1264. Slocum, D. H., E. A. McGinnes and F. C. Beall (1978) Charcoal yield, shrinkage, and density changes during carbonization of Oak and Hickory woods. Wood Sci. 11(1):42-47. Soares, S., G. Camino and S. Levchik (1998) Effect of metal carboxylates on thermal decomposition of cellulose. Polym. Degrad. Stab. 62(1): 25-31. Tang, M. M. and R. Bacon (1964) Carbonization of cellulose fibers - I. Low temperature pyrolysis. Carbon 2: 211-220. Zuo, S. L., S. Y. Gao, X. G. Yuan and B. S. Xu (2003) Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis. J. Forestry Res. 14(1): 75-79.
摘要: 
本研究係選用南投竹山所產4 ~ 6年生孟宗竹(Phyllostachys pubescens)為原料,探討多階段炭化製程對竹炭基本性質及吸附能力之影響。竹炭分一階段、二階段及三階段炭化,炭化溫度分別為400 ~ 800℃、500 ~ 900℃及1000℃,探討所得竹炭之炭收率、酸鹼值、灰分、元素組成、比表面積及碘值等性質。並進一步探討以15種竹炭吸附有機物質(鄰苯二甲酸氫鉀溶液)降低化學需氧量(COD)的處理效果。

研究結果顯示,竹炭之炭收率會隨炭化次數增加而降低,一階段炭化之炭收率較高(27.72 ~ 34.36%),而三階段炭化者最低(16.04 ~ 21.02%)。各階段之竹炭均偏鹼性,酸鹼值介於7.5 ~ 10.1之間。各階段之竹炭灰分含量為1.09 ~ 2.53%,以三階段炭化者最高。碳元素含量則以二階段炭化之竹炭最高(79.93 ~ 92.33%),而一階段炭化之竹炭者最低(77.34 ~ 86.85%)。BET比表面積會隨炭化次數增加而增加,以三階段炭化者最高(330.4 ~ 493.0 m2/g),而一階段炭化之竹炭者最低(0.2 ~ 163.5 m2/g)。

在液相吸附方面,本研究之15種竹炭,除F-400(以400℃進行一階段炭化之竹炭)外,其餘14種碘值皆可達600 mg/g以上,屬於活性碳等級,其中以三階段炭化竹炭的碘值最高,皆高於900 mg/g,甚至可達1000 mg/g以上。而竹炭降低COD之效果,則顯示COD的降低率會隨炭化次數增加而提高,此與碘值之變化趨勢一致,以三階段炭化竹炭的處理效果最佳,COD降低率最高可達54%。

The purpose of the study was to investigate the effect of multiple-step carbonization processes on the basic properties and adsorption capacities of bamboo charcoals, which manufactured from 4 to 6 years old moso bamboo (Phyllostachys pubescens) planted in the Jhu-shan in Nantou country. Bamboo charcoals obtained by one-, two- and three-step carbonization, the carbonization temperature of each step was 400 ~ 800℃、500 ~ 900℃ and 1000℃, respectively. The basic properties of bamboo charcoals included the charcoal yield, ash content, pH, elemental compositions, specific surface area and iodine number were also investigated. Furthermore, the removal efficiency of chemical oxygen demand (COD) using fifteen kinds of bamboo charcoals adsorption were also examined.

The results demonstrated that the yield of bamboo charcoals decreased with increasing steps of carbonization. Bamboo charcoals by one-step carbonization had the highest charcoal yield of 27.72 ~ 34.36%, and charcoals by three-step carbonization had the lowest one of 16.04 ~ 21.02%. All bamboo charcoals exhibited alkalinity, pH value were between 7.5 and 10.1. The ash content of charcoals by each step carbonization were between 1.09% and 2.53%, and charcoals by three-step carbonization were the highest one. Bamboo charcoals by two-step carbonization had the highest carbon content of 79.93 ~ 92.33%, and charcoals by one-step carbonization had the lowest one of 77.34 ~ 86.85%. The BET specific surface area increased with increasing steps of carbonization. Bamboo charcoals by three-step carbonization had the highest specific surface area of 330.4 ~ 493.0 m2/g and charcoals by one-step carbonization had the lowest one of 0.2 ~ 163.5 m2/g only.

At the liquid phase adsorption, the iodine number of fifteen kinds of bamboo charcoals in this study could be increased over 600 mg/g, except for F-400 (charcoals carbonized at 400℃ using one-step carbonization process), that was belong to activated carbon grade. The iodine number of bamboo charcoals by three-step carbonization had the highest one and could be increased over 900 mg/g, even could reached over 1000 mg/g. The research of bamboo charcoal for COD removal, it increased with increasing steps of carbonization. These results agreed with the trend in iodine number. Bamboo charcoals by three-step carbonization had the best removal efficiency of COD, it could reach 54%.
URI: http://hdl.handle.net/11455/65981
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.