Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65986
標題: 液化柳杉為基質PU樹脂/奈米矽氧有機-無機混成材料之製備及性質
Preparation and Properties of Liquefied Cryptomeria japonica-Based Polyurethane Resins/Nanosilica Organic-Inorganic Hybrids
作者: 高毓斌
Kao, Yu-Pin
關鍵字: Liquefacation;液化;Cryptomeria japonica;Organic-inorganic hybrids;Polysilicic acid particles;Polyurethane resins;Sol-gel process;柳杉;有機-無機混成材料;聚矽酸微粒;聚胺基甲酸酯樹脂;溶膠-凝膠製程
出版社: 森林學系所
引用: 1. 尤昭云、李文昭 (2006) 多元醇液化柳杉及其在PU發泡體之應用。林產工業 25 (2):143-158。 2. 宋憶青 (2006) 溶膠-凝膠法應用於乙烯矽樹脂/聚矽氧烷混成材料之基礎研究及其利用。國立中興大學森林學系博士學位論文。pp.53-55。 3. 李文昭、林孟萱 (2009) 多元醇液化木材製作聚胺基甲酸酯薄膜之力學性質。林產工業 28(3):167-176。 4. 李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。 5. 李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 6. 李文昭、張嘉方 (2004b) 多元醇液化木材相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23:239-248。 7. 李文昭、張嘉方 (2007) 異氰酸酯種類對液化木材所製造聚胺基甲酸酯發泡體性質之影響。中華林學季刊 40(3):405-416。 8. 李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25(3):73-86。 9. 吳曉旋、李文昭、尤昭云、吳秋昌 (2009) 液化柳杉為基質PU發泡體以二乙二醇為溶劑之醇解及其產物回收再利用。林業研究季刊 31(1):65-74。 10. 吳曉旋、吳秋昌、李文昭 (2008) 界面活性劑種類及添加量對多元醇液化柳杉木材製造聚胺基甲酸酯(PU)發泡體之影響。林業研究季刊 30(4):65-76。 11. 高毓斌、吳秋昌、張國峻、李文昭 (2009) 酚液化相思樹-甲醛製備Novolak型酚樹脂之反應特性及其所製造成型板之性質。中華林學季刊 42(3):421-433。 12. 高毓斌、李文昭 (2011) 多元醇液化柳杉為基質PU樹脂之薄膜性質及填縫膠合性能。林業研究季刊,已接受。 13. 陳奕君、李文昭、劉正字(2006) 酚液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業 25(3):249-258。 14. 陳奕君、李文昭、劉正字 (2007) 酚液化孟宗竹材製備Resol型醇溶性酚樹脂及其性質。林業研究季刊 29(2):55-66。 15. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.129。 16. 葉瑞銘、翁暢健 (2004) 有機無機混成奈米複合材料。J. Chin. Chem. Soc. 62(4):473-482. 17. Ahn, T. O., I. S. Choi, H. M. Jeong and K. Cho (1993) Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods. Polym. Int. 31:329-333. 18. Bakirova, I. N., V. I. Vluev, I. G. Demchenko and L. A. Zenitova (2002) Chemical structure and molecular mass characteristics of products in the glycolysis of a flexible poly(urethane) foam. J. Polym. Sci., Part A: Polym. Chem. 44(6):615-622. 19. Berta, M., C. Lindsay, G. Pans and G. Camino (2006) Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stabil. 91:1179-1191. 20. Cervantes-Uc, J.M., J. I. M. Espinosa, J. V. Cauich-Rodriguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez and J. S. Roman (2009) TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polym. Degrad. Stabil. 94:1666-1677. 21. Chan-Chan, L. H., R. Solis-Correa, R. F. Vargas-Coronado, J. M. Cervantes-Uc, J. V. Cauich-Rodriguez, P. Quintana and P. Bartolo-Perez (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater. 6: 2035-2044. 22. Chang, H. T., T. F. Yeh and S. T. Chang (2002) Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polym. Degrad. Stab. 77:129-135. 23. Chen, F. and Z. Lu (2009) Liquefaction of wheat Straw and preparation of rigid polyurethane foam from the liquefaction products. J. Appl. Polym. Sci. 111:508-516. 24. Chen, X. C., B. You, S. X. Zhou and L. M. Wu (2003b) Surface and interface characterization of polyester-based polyurethane/nano-silica composites. Surf. Interface Anal. 35:369–374. 25. Chen, X. C., L. M. Wu, S. X. Zhou and B. Yo (2003a) In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites. Polym. Int. 52:993-998. 26. Chen, Y and J. O. Iroh (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mat. 11:1218-1222. 27. Chen, Y. C., S. Zhou, H. H. Yang and L. M. Wu (2005) Structure and properties of polyurethane/nanosilica composites. J. Appl. Polym. Sci. 95: 1032–1039. 28. Choi, M. Y., S. Anandhan, J. H. Youk, D. H. Baik, S. W. Seo and H. S. Lee (2006) Synthesis and characterization of in situ polymerized segmented thermoplastic elastomeric polyurethane/layered silicate clay nanocomposites. J. Appl. Polym. Sci. 102:3048-3055. 29. Doh, G. H., S. Y. Lee, I. A. Kang and Y. T. Kong (2005) Thermal behavior of liquefied wood polymer composites (LWPC). Compos. Struct. 68:103-108. 30. Dominguez-Rosadoa, E., J. J. Liggata, C. E. Snapeb, B. Elingc and J. Pichteld (2002) Thermal degradation of urethane modified polyisocyanurate foams based on aliphatic and aromatic polyester polyol. Polym. Degrad. Stab. 78:1-5. 31. Duo, Y., H. Tan and F. Chen (2002) Synthesis and Characterization of Thermoplastic Polyurethanes as Binder for Novel Thermoplastic Propellant. J. Appl. Polym. Sci. 83:2961–2966. 32. Fernandez d’Arlas, B., L.Rueda, K. D. L. Caba, I. Mondragon and A. Eceiza (2008) Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polym. Eng. Sci. 48:519-529. 33. Gao, Y., N. R. Choudhury, N. Dutta, J. Matisons, M. Reading and L. Delmotte (2001) Organic-inorganic hybrid from ionomer via Sol-Gel reaction. Chem. Mat. 13:3644-3652. 34. Gianni, A. D., R. Bongiovanni, S. Turri, F. Deflorian, G. Malucelli and G. Rizza (2009) UV-cured coatings based on waterborne resins and SiO2 nanoparticles. J. Coat. Technol. Res. 6(2):177-185. 35. Gnter Oertel (1993) “Polyurethane Handbook” 2nd ed, Hanser Publisher, Munich Vienna New York. 36. Haseth, J. A. de, J. E. Andrews, J. V. McClusky, R. D. Priester, M. A. Harthcock, and B. L. Davis (1993) Characterization of polyurethane foams by mid-infrared fiber/FT-IR spectrometry. Appl. Spectrosc. 47:(2)173-179. 37. Herrera, M., G. Matuschek and A. Kettrup (2002) Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym. Degrad. Stab. 78:323-331. 38. Iler, R. K. (1979) The chemistry of silica from “Sol-Gel science: The physics and chemistry of sol-gel processing”, 1st Academic Press. U.S.A. 39. Jirgensons, B. and M. E. Straumanis (1962) A Short Textbook of colloid. Chemistry (2nd revisededn). The Macmillan Co. New York. 40. Kim, H. D., J. H. Huh, E. Y. Kim and C. C. Park (1998) Comparison of properties of thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 69:1349-1355. 41. Kramer, R. H., M. Zammarano, G. T. Linteris, U. W. Gedde and J. W. Gilman (2010) Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 95:1115-1122. 42. Kuan, H. C., H. Y. Su and C. C. Ma (2005) Synthesis and characterization of polysilicic acid nanoparticles/waterborne polyurethane nanocomposite. J. Mater. Sci. 40:6063-6070. 43. Kultys, A., M. Rogulska and H. Gluchowska (2011) The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polym. Int. 60:652-659. 44. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53(6):617-622. 45. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157. 46. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from the liquefied wood. Biomass Bioenergy 21:381-390. 47. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresour. Technol. 77:33-40. 48. Lai, S. M. and S. D. Liu (2007) Properties and preparation of thermoplastic polyurethane/silica hybrids using a modified sol–gel process. Polym. Eng. Sci. 47:77-86. 49. Lai, S.M., C. K. Wang and H. F. Shen (2005) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol–gel process. J. Appl. Polym. Sci. 97: 1316-1325. 50. Lee, D. K. and H. B. Tsai (2000) Properties of segmented polyurethanes derived from different diisocyanates. J. Appl. Polym. Sci. 75:167-174. 51. Lee, D. K., H. B. Tsai, R. S. Tsai and P. H. Chen (2007) Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different Polyols. Polym. Eng. Sci. 47:695–701. 52. Lee, S. H., T. Ohkita and Y. Teramoto (2005) Polyol recovery from biomass-based polyurethane foam by glycolysis. J. Appl. Polym. Sci. 95:975-980. 53. Lee, S. H., Y. Teeamoto and N. Shiraishi (2002) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84.468-472. 54. Lee W. J. and Y. C. Chen (2008) Novolak PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. Bioresour. Technol. 99:7247-7254. 55. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan Acacia and China Fir. J. Appl. Polym. Sci. 109:23-31. 56. Lefebvre, J., S. Duquesne, V. Mamleev, M. L. Bras and R. Delobel (2003) Study of the kinetics of pyrolysis of a rigid polyurethane foam: use of the invariant kinetics parameters method. Polym. Adv. Technol. 14:796-801. 57. Martin, D. J., G. F. Meijs, G. M. Renwick, P. A. Gunatillake, S. J.McCarthy and G. M. Renwick (1997) The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS-DSC annealing study. J. Appl. Polym. Sci. 64:803-817. 58. Pan, H., Shupe T. F. and Hse C. Y. (2008) Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins. J. Appl. Polym. Sci. 108: 1837-1844. 59. Pan, H., Shupe T. F. and Hse C. Y. (2009) Characterization of novolac type liquefied wood/phenol/formaldehyde (LWPF) resin. Eur. J. Wood Wood Prod. 67:427-437. 60. Park, N. H., J. W. LEE and K. D. Suh (2002) In situ polyurethane/silica composite formation via a sol-gel process. J. Appl. Polym. Sci. 84:2327-2334. 61. Petrović, Z. S., Z. Zavargo, J. H. Fly and W. J. Macknight (1994) Thermal Degradation of Segmented Polyurethanes. J. Appl. Polym. Sci. 51:1087-1095. 62. Pizzatto L., A. Lizot, R. Fiorio, C. L. Amorim, G. Machado, M. Giovanela, A. J. Zattera and J. S. Crespo (2009) Synthesis and characterization of thermoplastic polyurethane/nanoclay composites. Mater. Sci. Eng., C. 29:474-478. 63. Ravey, M. and E. M. Pearce (1997) Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 63:47-74. 64. Sanchez–Adsuar, M. S., E. Papon, J-J. Villenave (2000a) Influence of the Synthesis Conditions on the Properties of Thermoplastic Polyurethane Elastomers. J. Appl. Polym. Sci. 76:1590-1595 65. Sanchez–Adsuar, M. S., E. Papon and J-J. Villenave (2000b) Influence of the prepolymerization on the properties of thermoplastic polyurethane elastomers. Part I. Prepolymer characterization. J. Appl. Polym. Sci. 76:1596-1601 66. Sanchez–Adsuar, M. S., E. Papon, J-J. Villenave (2000c) Influence of the prepolymerization on the properties of thermoplastic polyurethane elastomers. Part II. Relationship between the prepolymer and polyurethane properties. J. Appl. Polym. Sci.76: 1602–1607. 67. Sanchez-Adsuar, M. S, E Papon, J-J Villenave (2000d) Rheological characterization of thermoplastic polyurethane elastomers. Polym. Int. 49: 591–598. 68. Savelyev, Y. V., V. Y. Veselov, V. K. Kharitonova, O. A. Savelyeva, V. I. Shtompel, A. I. Perekhrest, T. V. Travinskaya, A. Kanapitsas and P. Pissis (2009) Synthesis and structural peculiarities of 1,1-dimethylhydrazine-based polyurethanes. J. Appl. Polym. Sci. 112:2732-2740. 69. Schmidt, H. (1985) New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids. 73:681-691. 70. Semsarzadeh, M. A. and A. H. Navarchian (2003) Effects of NCO/OH Ratio and Catalyst Concentration on Structure, Thermal Stability, and Crosslink Density of Poly(urethane-isocyanurate). J. Appl. Polym. Sci. 90:963-972. 71. Seo W. J., Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee and W. N. Kim (2005) Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate. J. Appl. Polym. Sci. 101:2879-2883. 72. Speckhard, T. A., K. K. S. Hwang, C. Z. Yang, W. R. Laupan and S. L. Cooper (1984) Properties of segmented polyurethane zwitterionomer elastomers. J. Macromol. Sci. Part B-Phys. 175-199. 73. Torro-Palau, A. M., J. C. Fernandez-Garcia, A. C. Orgiles-Barcelo, T. P. Ferrandiz-Gomez and J. M. Martin-Martinez (2001) Rheological properties of polyurethane adhesives containing silica as filler: influence of the nature and surface chemistry of silica. Macromol. Symp. 169:191-196. 74. Wang, H. and H. Z. Chen (2007) A novel method of utilizing the biomass resource: Rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J. Chin. Inst. Chem. Eng. 38:95-102. 75. Wang, T., L. Zhang, D. Li, J. Yin, S. Wu and Z. Mao (2008) Mechanical properties of polyurethane foams prepared from liquefied corn stover with PAPI. Bioresour. Technol. 99:2265-2268. 76. Widmaier, J. M. and G. Bonilla (2006) In situ synthesis of optically transparent interpenetrating organic/inorganic networks. Polym. Adv. Technol. 17:634-640. 77. Woolley, W. D. (1972) Nitrogen-containing products from the thermal decomposition of flexible polyurethane foams. Br. Polym. J. 4: 27-43. 78. Xu, J. W., W. F. Shi and W. M. Pang (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47:457-465. 79. Yao, Y., M. Yoshioka and N. Shiraishi (1995) Rigid polyurethane foams from combined liquefied mixtures of wood and starch. Mokuzai Gakkaishi 41(7):659-668. 80. Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 60:1939-1949. 81. Yu, H., Q. Ran, S. Wu and J. Shen (2008) Structure and property of PU/MMT nanocomposites by in-situ polymerization. Polym.-Plast. Technol. Eng. 47:619-622. 82. Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour. Technol. 97:313-321. 83. Zhu, Y. and D. X. Sun (2004) Preparation of silicon dioxide/polyurethane nanocomposites by a sol-gel process. J. Appl. Polym. Sci. 92:2013-2016. 84. Zia, K. M., H. N. Bhatti and I. A. Bhatti (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 67:675-692.
摘要: 
本研究將柳杉(Cryptomeria japonica; Japanese cedar)木材以聚乙二醇/丙三醇為液化溶劑,硫酸為催化劑進行液化處理,所得液化柳杉與二官能性之聚四甲基醚二醇(Polytetramethylene glycol; PTMG)以不同重量比混合做為多元醇原料,並將其與二官能性之異佛爾酮二異氰酸酯(Isophorone diisocyanate; IPDI)及三官能性之Desmodur L與Desmodur N反應製備聚胺基甲酸酯樹脂(Polyurethane resin; PU),再將此含生物質之PU樹脂分別添加聚矽酸(Polysilicic acid; PSA)微粒與四乙基矽氧烷(Tetraethoxysilane; TEOS)預聚物以溶膠-凝膠法製備有機-無機混成材料。由試驗結果得知, PTMG與IPDI於NCO/OH莫耳比2.0所合成PU樹脂之黏度低於莫耳比1.5者,且其樹脂薄膜有較佳之耐溶劑性、機械性質及耐熱性,並具備較高之架橋程度及玻璃轉移溫度;添加PSA微粒或TEOS預聚物製備有機-無機混成材料時,以NCO/OH莫耳比2.0者為基質之混成樹脂薄膜之性質優於莫耳比1.5者;PU樹脂合成時20%之PTMG以液化木材取代,其PU樹脂溶液之黏度即大幅增加;隨液化柳杉取代量增加,其樹脂薄膜之架橋密度及耐熱性增加,但破壞伸長率降低。將PSA微粒或TEOS預聚物導入含生物質PU樹脂中製備有機-無機混成材料時,混成樹脂薄膜之耐熱性均隨矽氧高分子添加量增加而提高。以PTMG及液化柳杉混合物與Desmodur N及Desmodur L反應製備熱固型PU樹脂時,以PTMG/液化柳杉重量比為75/25,NCO/OH莫耳比為1.6所製備之樹脂薄膜有較佳之性質,其中以Desmodur N為異氰酸酯原料者有較佳之耐水性及耐溶劑性;以Desmodur L為原料者有較佳之機械性質與耐熱性,而DMA分析顯示以Desmodur L為異氰酸酯原料所製備之樹脂薄膜有相分離現象產生;添加PSA微粒可增加混成樹脂薄膜之耐熱性及600℃焦炭率。

In this study, Cryptomeria japonica (Japanese cedar) was liquefied in polyethylene glycol/glycerol with H2SO4 as a catalyst. The liquefied Japanese cedar were mixed with two-functionality polytetramethylene glycol with various weight ratios and used as raw materials of polyol that were reacted with two-functionality isophorone diisocyanate (IPDI) or three-functionality Desmodur N and Desmodur L to prepare polyurethane (PU) resins. The organic-inorganic hybrids were prepared by blending the biomass-containing PU resins with micro particles of polysilicic acid (PSA) or the prepolymer of tetraethoxysilane (TEOS) by sol-gel process. The results show that PU resin synthesized from PTMG and IPDI with the NCO/OH molar ratio of 2.0 had the viscosity lower than that with 1.5 and had the film with better solvent resistance, mechanical properties, heat resistance and higher crosslinking degree and glass transition temperature. When films of organic-inorganic hybrid were prepared by mixing with PSA particles or TEOS prepolymer, the PU matrix that had the NCO/OH molar ratio of 2.0 had better performance than that with the molar ratio of 1.5.
The viscosity of PU resin increased drastically when 20% of PTMG was replaced with liquefied wood. Increasing the amount of liquefied wood, the crosslink density and heat resistance of resin films were increased, but the elongation was reduced. Introducing PSA particles or TEOS prepolymer to biomass-based PU resins to prepare organic-inorganic hybrids, the heat resistance of hybrid films increased as the content of silica polymer increased. When the mixture of PTMG and liquefied wood were reacted with Desmodur N or Desmodur L to prepare thermosetting PU resins, using the PTMG/liquefied wood weight ratio of 75/25 and NCO/OH molar ratio of 1.6 had better properties. Among which, using Desmodur N as isocyanate had better water resistance and solvent resistance, and those using Desmodur L as isocyanate had better mechanical properties and heat resistance. DMA showed that films prepared with Desmodur L had phase separation. Adding PSA particles to PU resin could increase the heat resistance and yield of charcoal at 600℃.
URI: http://hdl.handle.net/11455/65986
其他識別: U0005-1808201117433700
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.