Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65989
標題: 液化木材應用於環氧化Novolac型PF樹脂製備及其硬化樹脂之性質
Application of Liquefied Wood for Preparing Epoxidized Novolac-type Phenol-Formaldehyde Resins and the Properties of Cured Resins
作者: 謝漢民
Hsieh, Han-Min
關鍵字: Blended resins;掺合樹脂;Epoxidized PF resins;Moldings;Novolac-type PF resins;Phenol-liquefied;Cryptomeria japonica;環氧化PF樹脂;成型板;Novolac型PF樹脂;酚液化;柳杉
出版社: 森林學系所
引用: 參考文獻 1.李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。 2.李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3) :205-214。 3.李文昭、張嘉方 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 4.李文昭、張嘉方 (2004b) 多元醇液化相思樹在聚胺基甲酸酯發泡體製造之應用。林產工業 23(3):239-248。 5.李文昭、張嘉方 (2007) 異氰酸酯種類對液化木材所製造聚胺基甲酸酯發泡體性質之影響。中華林學季刊 40(3):405-416。 6.李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25(3):73-86。 7.李文昭、劉正字、侯家翔 (2004) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23(1):43-53。 8.高毓斌、吳秋昌、張國峻、李文昭 (2009) 酚液化相思樹-甲醛製備Novolac型酚樹脂之反應特性及其所製造成型板之性質。中華林學季刊 42(3):421-433。 9.陳奕君、李文昭、劉正字 (2007) 酚液化孟宗竹製備Resol型醇溶性酚樹脂及其性質。林業研究季刊 29(2):55-66。 10.張上鎮、吳季玲、王升陽、張惠婷 (1997) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業 16(4):825-838。 11.張上鎮、吳季玲、王升陽、張惠婷 (1998) 木粉濃度與顆粒大小對木材散反射傅立葉轉換紅外線光譜分析之影響。台灣林業科學 13(1):11-18。 12.趙中譽、張國峻、李文昭 (2008) 甲醛與酚液化柳杉調配比對其所製備Novolac型PF樹脂及成型板性質之影響。林產工業 27(4):259-269。 13.Alma, M.H., M. Yoshioka, Y. Yao and N. Shiraishi (1995) Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Sci. Technol. 30:39-47. 14.Alma, M.H., M. Yoshioka, Y. Yao and N. Shiraishi (1996) The preparation and flow properties of HCl catalyzed phenolated wood and its blends with commercial novolak resin. Holzforschung 50:85-90. 15.Alma, M.H. and S.S. Kelley (2000a) Thermal stability of novolak-type thermosettings made by the condensation of bark and phenol. Polym. Degrad. Stab. 68:413-418. 16.Alma, M.H., D. Maldas and N. Shiraishi (2000b) Resinification of NaOH-catalyzed phenolated wood-phenol mixture with formalin for making molding materials. J. Adhes. Sci. Technol. 16(8):1141-1151. 17.Auad, M.L., L. Zhao, H. Shen, S.R. Nutt and U. Sorathia (2006) Flammability properties and mechanical performance of epoxy modified phenolic foams. J. Appl. Polym. Sci. 104:1399-1407. 18.Benny Cherian, A. and E. Thomas Thachil (2006) Epoxidized phenolic Novolac: A novel modifier for unsaturated polyester resin. J. Appl. Polym. Sci. 100:457-465. 19.Byrne, C.E. and D.C. Nagle (1996) Carbonization of wood for advanced materials applications. Carbon 35:259-266. 20.Cao, Y., Sh. Yuefeng , J. Sun and Sh. Lin (2003) Mechanical properties of an epoxy resin toughened by polyester. J. Appl. Polym. Sci. 90:3384-3389. 21.Costa, L., L.R. Montelera, G. Camino, E.D. Weil and E.M. Pearce (1997) Structure-charring relationship in phenol-formaldehyde type resins. Polym. Degrad. Stab. 56:23-35. 22.Gardziella, A., L.A. Pilato and A. Knop (1999) Phenolic resins: Chemistry, Applications, Standardization, Safety and Ecology. Springer. New York. pp. 24-82. 23.Gardner, K. and J. Blackwell (1947a) Structure of native cellulose. Biopolymers 13:1975-2001. 24.Gardner, K. and J. Blackwell (1947b) The hydrogen bonding in celllose. Biochim. Biophys. Acta. 343:232-237. 25.Hale, A. and C.W. Macosko (1989) DSC and 13C-NMR studies of the imidazole accelerated reaction between epoxides and phenols. J. Appl. Polym. Sci. 38:1253-69. 26.Hasllam, J. and H. A. Willis (1965) Identification and analysis of plastics. D Van Nosrand company, Inc., Princeton, New Jersey. 27.Hassan, E.B., M. Kim and H. Wan (2009) Phenol-formaldehyde-type resins made from phenol-liquefied wood for the bonding of particleboard. J. Appl. Polym. Sci. 112:1436-1443. 28.Ho, T.H. (2000) Synthesis of naphthalene containing aralkyl novolac epoxy resins for electronic application. Macromol. Mater. Eng. 283:57-61. 29.Holopainen, T., L. Alivila, J. Rainio and T.T. Pakkanen (1998) IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins. J. Appl. Polym. Sci. 69: 2175-2185. 30.Krassig, H.A. (1993) Cellulose: structure, accessibility. Yverdon, Switzerland: Gordon & Breach. 31.Kristkova, M., P. Filip, Z. Weiss and R. Peter (2004) Influence of metals on the phenol-formaldehyde resin degradation in friction composites. Polym. Degrad. Stab. 84:49-60. 32.Kurimoto, Y., M. Takeda, A. Koizumi, S.Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 74:151-157 33.Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane film prepared from the liquefied wood. Biomass and Bioenergy 21:381-390. 34.Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared form liquefied wood. Bioresour. Technol. 77:33-40 35.Laza, J.M., J.L. Vilas, M.T. Garay, M. Rodriguez and L.M. Leon (2005) Dynamic mechanical properties of epoxy-phenolic mixtures. J. Polym. Sci. Pt. B-Polym. Phys. 43:1548-1555. 36.Lee, S.H., M. Yoshioka and N. Shiraishi (2000) Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde condensed resin. J. Appl. Polym. Sci. 77:2901-2907. 37.Lee, S.H., Y. Teramoto and N. Shiraishi (2002a) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to novolak-type phenolic resin. J. Appl. Polym. Sci. 83:1473-1481. 38.Lee, S.H., Y. Teramoto and N. Shiraishi (2002b) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84:468-472. 39.Lee, S.H. (2003) Phenolic Resol resin from phenolated corn bran and its characteristics. J. Appl. Polym. Sci. 87:1365-1370. 40.Lee, W.J. and C.T. Liu (2003) Preparation of liquefied bark-based resol resin and its application to particleboard. J. Appl. Polym. Sci. 87:1837-1841. 41.Lee, W.J. and Y.C. Chen (2008) Novolac PF resins prepared from phenol liquefied Cryptomeria japonica and used in manufacturing moldings. Bioresour. Technol. 99:7247-7254. 42.Lee, W.J., Y.C. Chen, C.C. Wu and Y.M. Juan (2009) Physicomechanical and thermal properties of moldings made from liquefied wood-based Novolac PF resins under various hot-pressing conditions. J. Appl. Polym. Sci. 113:1257-1263. 43.Li, M.S., C.C.M. Ma, M.L. Lin and F.C. Chang (1997) Chemical reaction occurring during the preparation of polycarbonate-epoxy blends. Polymer 38:4903-4913 44.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi. (1994) Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J. Appl. Polym. Sci. 52:1629-1636. 45.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Physical properties of moldings from liquefied wood resins. J. Appl. Polym. Sci. 55:1563-1571. 46.Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Preparation and properties of phenolated wood/phenol/formaldehyde cocondensed resin. J. Appl. Polym. Sci. 58:1297-1304. 47.Lin, L., M. Yoshioka,Y. Yao and N. Shiraishi (1997) Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts. II. Reaction pathway. Holzforschung 51:325-332. 48.Lin, L., Y. Yao and N. Shiraishi (2001a) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. I. Identification of the reaction products. Holzforschung 55:617-624. 49.Lin, L., S. Nakagame, Y. Yao, M. Yoshioka and N. Shiraishi (2001b) Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. II. Reaction behavior and pathways. Holzforschung 55:625-630. 50.Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (2004) Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohyd. Polym. 57:123-129. 51.Liu, Y.L., G. H. Hsiue, R.H. LEE and Y. S. Chiu (1997) Phosphorus-containing epoxy for flame retardant. III: using phosphorylated diamines as curing agents. J. Appl. Polym. Sci. 63:895-901. 52.Liu, Y.L. and C.I. Chou (2005) The effect of silicon sources on the mechanism of phosphorusesilicon synergism of flame retardation of epoxy resins. Polym. Degrad. Stabil. 90:515-522. 53.Lin-Gibson, S., V. Baranauskas, J.S. Riffle and U. Sorathia (2002) Cresol novolac–epoxy networks: properties and processability. Polymer 43:7389-7398. 54.Maldas, D., N. Shiraish, Y and Harada (1997) Phenolic resol resin adhesives prepared from alkali-catalyzed liquefied phenolated wood and used to bond hardwood. J. Adhes. Sci. Technol. 11: 305-316. 55.Martin, C., G. Lligadas, J.C. Ronda, M. Galia and V. Cadiz (2006) Synthesis of Novel Boron-Containing Epoxy-Novolac Resins and Properties of Cured Products. J. Appl. Polym. Sci. 44:6332-6344. 56.Nevell, T.P. and S.H. Zeronian (1985) Cellulose chemistry fundamentals. In: Kennedy JF, Philips GO, Wedlock DJ, Williams PA, editors. Cellulose and its applications: chemistry, biochemistry and applications. Chichester: John wiley &Sons. p 15-29 57.Ogato, M., N. Kinjo and T. Kawata (1993) Effect of cross linking on physical properties of phenol–HCHO–novolac cured epoxy resins. J. Appl. Polym. Sci. 48:583-601. 58.Ono, H.K. and K. Sudo. (1996) Adhesives from wastes paper by means of phenolation. J. Adhes. Sci. Technol. 59:135-145. 59.Pichelin, F., C. Kamoun and A. Pizzi (1999) Hexamine hardener behavior: effects on wood gluing, tannin and other wood adhesives. Holz als Roh- und Werkstoff 57:305-317. 60.Patel, R.D., M.B. Patel, R.G. Patel and V.S. Patel (1991) Glass-reinforced epoxy novolac composites. Polym. Adv. Technol. 2:197-200. 61.Roman-Martinez, M.C., D. Cazorla-Amoros, C. Linares-Solano, Salinas-Martinez and F. Atamny(1996) Structure study of a phenol-formaldehyde char. Carbon 34:719-727 62.Sun, J.X., R.C. Sun, X.F. Sun and Y.Q. Su (2004) Fractional and physico-chemical characterization of hemicelluloses form ultrasonic irradiated sugarcane bagasse. Carbohydr. Res. 339;291-300. 63.Shiraishi, N. (1991) Wood plasticization, in Wood and Cellulosic Chemistry. Marcel Dekker, Inc., New York. pp. 861-906. 64.Trick, K.A. and T.E. Saliba (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33:1509-1515. 65.Trick, K.A., T.E. Saliba and S.S. Sandhu (1997) A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 35:393-401. 66.Tyberg, C.S., K. Bergeron, M. Sankarapandian, P. Shih, A.C. Loos, D. A. Dillard, J.E. McGrath, J. S. Riffle and U. Sorathia (1999) Tough, voidfree, flame retardant phenolic matrix materials. Constr. Build. Mater. 13:343-353. 67.Tyberg, C.S., K. Bergeron, M. Sankarapandian, P. Shih, A.C. Loos, D.A. Dillard, J.E. McGrath, J.S. Riffle and U. Sorathia (2000) Structure-property relationships of void-free phenolic–epoxy matrix materials. Polymer 41:5053-5062. 68.Zhang, Y., A. Ikeda, N. Hori, A. Takemura, H. Ono and T. Yamada (2006) Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour. Technol. 97:313-321.
摘要: 
本研究將柳杉(Cryptomeria japonica; Japanese fir)木材以酚為溶劑,H2SO4或HCl為催化劑進行液化處理,並將酚液化柳杉及酚分別與福馬林在酸性條件下合成Novolac型PF樹脂;進一步則將此Novolac型PF樹脂與環氧氯丙烷反應製備環氧化Novolac型PF樹脂,並探討此環氧化Novolac型PF樹脂以三乙基四胺(Triethylene tetramine; TETA)、順丁烯二酸酐(Maleic anhydride; MA)、六亞甲基四胺(Hexamethylenetetramine; Hexamine)及MA/Hexamine混合物為架橋硬化劑之反應性;另探討將環氧樹脂與Novolac型PF樹脂直接混合所得掺合樹脂之硬化性。由試驗結果可知,柳杉木材於酚液體中進行液化處理時,以H2SO4為催化劑者有較佳之液化效果。以酚液化柳杉或酚為原料所製備之Novolac型PF樹脂添加Hexamine為架橋硬化劑後可加熱而形成三次元網狀結構之硬化樹脂;將此Novolac型PF樹脂混合填料木粉、Hexamine及硬脂酸鋅可熱壓製作成型板,其板材具有良好尺寸安定性及內聚強度。環氧化Novolac型PF樹脂以TETA為硬化劑時具備常溫硬化性;然採用MA、Hexamine及MA/Hexamine混合物為硬化劑者則須加熱硬化,DSC分析顯示添加MA/Hexamine混合硬化劑者在熱硬化過程具有兩個硬化放熱峰;採用MA/Hexamine混合硬化劑者,其硬化後之環氧化Novolac型PF樹脂有較佳之溶出試驗重量保留率、機械性質、儲存模數及熱性質;然硬化樹脂之性質隨液化木材所製備PF樹脂含量增加而降低。環氧樹脂與PF樹脂混合並添加三苯基磷(Triphenylphosphine; TPP)為催化劑時可加熱硬化,其中PF樹脂比例較高者其重量保留率、機械性質、儲存模數均較大。

In this study, Cryptomeria japonica (Japanese fir) was liquefied in phenol with H2SO4 or HCl as a catalyst. Novolac-type phenol-formaldehyde resins (PF) were synthesized by reacting phenol-liquefied wood or phenol with formalin under acid condition. The Novolac-type PF resins prepared were then reacted with epichlorohydrin to form epoxidized Novolac-type PF resins. The reactivity of epoxidized Novolac-type PF resins with triethylene tetramine (TETA), maleic anhydride (MA), hexamethylenetetramine (Hexamine) and the mixture of MA-Hexamine as cross-linking hardeners were investigated. In addition, the curing capability of directly blending epoxy resin with Novolac-type PF resins was investigated too. The result shows that wood of Japanese cedar liquefied with H2SO4 as the catalyst had a better effect than that with HCl as the catalyst. Both Novolac-type PF resins that prepared from phenol-liquefied wood and phenol could form three-dimensional setting-resins under heating after hexamine was added as the cross-linking hardener. Moldings with good dimensional stability and internal bonding strength could be made with the mixture of Novolac-type PF resin, wood powder, hexamine and zinc stearate under hot-pressing. Epoxidized Novolac-type PF resins possessed the capability of room temperature curing when TETA was used as the hardener. However, heating would be necessary for curing when MA, hexamine and the mixture of MA/Hexamine were used as hardeners. DSC analysis showed two exothermic peaks during heat-curing when MA/Hexamine mixture was used as the hardener. Cured epoxidized Novolac-type PF resins that used MA/Hexamine mixture as the hardener had better weight retention, mechanical properties, storage modulus and thermal properties than others. Nevertheless, the properties would reduce as the rate of liquefied wood-base PF resins increased. Epoxy resin that blended with PF resin and triphenylphosphine could cure under heating, and more the ratio of PF resin, higher the weight retention, mechanical properties and storage modulus would be.
URI: http://hdl.handle.net/11455/65989
其他識別: U0005-1808201119022100
Appears in Collections:森林學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.