Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65994
標題: 回收對瓦楞紙板纖維性質的影響及再生纖維的改質
Effect of Recycling on Fiber Characteristics of Corrugated Board and Modification of Recycled Fiber
作者: 陳文斌
Chen, Wen-Bin
關鍵字: Recycling;回收;fiber modification;alkaline soaking;enzyme treatment;CMC;纖維改質;鹼浸漬;酵素處理;CMC
出版社: 森林學系所
引用: 1. 台灣造紙工業同業公會(2006)台灣造紙工業同業統計。第16頁。 2. 張豐吉、陳鴻財(1996)回收廢紙製造瓦楞芯紙之研究(二)改善再生紙品質之研究。漿紙技術 1(2):19–32。 3. 蔡東和(2005)台灣造紙產業的發展與挑戰。漿紙技術 9(2):1–5。 4. 羅豪偉、曾傑琳、李璜桂(1999)耐熱絕緣基層板用原紙之製造。漿紙技術 3(2):37–43。 5. 蘇裕昌、孫德貴(1995)廢紙脫墨之研究(第一報)回收新聞紙脫墨法之確立及脫墨紙漿性質的改良。林業試驗所研究報告季刊 10(3):293–307。 6. 蘇裕昌(2001 a)抄製紙張的基礎。漿紙技術 5(1):33–42。 7. 蘇裕昌(2001 b)再生對纖維紙張品質的影響。漿紙技術 5(4):1–9。 8. 蘇裕昌(2003)台灣紙業界之現況及未來展望。漿紙技術 6(4):1–15。 9. 蘇裕昌(2005)硫酸鹽製漿的基礎。漿紙技術 9(1):1–21。 10. 門屋卓,臼田誠人,大江礼三郎(1982)製紙科學。中外產業調查會有限會社。723–725。 11. 金鳳庸、磯貝明、尾鍋史彥、臼田誠人(1990)紫外線による紙の劣化機構。紙パ技協誌 44(2):62–68。 12. 磯貝明 (2008) パルプ纖維の化學的および機械的改質手法とその效果。紙パ技協誌 62(7):54–62。 13. Fengel, D. and G. Wegener (1989) Wood:chemistry, ultrastructure, reactions. Walter de Gruyter & Co. 511–512. 14. Abubakr, S., G. Scott and J. Klungness (1995) Fiber fractionation as a method of improving handsheet properties after repeated recycling. Tappi Journal 78(5):123–126. 15. Campbell, W. B. (1959) The mechanism of bonding. Tappi 42(12):999–1001. 16. Dienes, D., A. Egyházi and K. Réczey (2004) Treatment of recycled fiber with Trichoderma cellulases. Industrial Crops and Products 20:11–21. 17. Freeland, S. A. and B. F. Hrutfiord (1994) Caustic treatment of OCC for strength improvement during recycling. Tappi Journal 77(4):185–191. 18. Freudenberg, K. and H. Schlüter (1955) Intermediates in the formation of lignin. Chemische Berichte 88:617–625. 19. Gurnagul, N. (1995) Sodium hydroxide addition during recycling:effect on fiber swelling and sheet strength. Tappi Journal 78(12):119–124. 20. Jayme, G.. (1944) Micro-swelling measurement in cellulosic pulp. Papier-fabr. /. 13. Wochenbl. Papierfabr 6:187–194. 21. Howard R. C. (1990) The effects of recycling on paper quality, Journal of pulp and paper science 15(5):143–149. 22. Howard R. C. and W. Bichard (1992) The basic effects of recycling on pulp properties. Journal of Pulp and Paper Science 18(4):151–159. 23. Katz S., N. Liebergott and A. M. Scallan (1981) A mechanism for the alkali strengthening of mechanical pulps. Tappi Journal 64(7):97 – 100. 24. Laivin, G.V. and A. M. Scallan (1993) The mechanism of hornification of wood pulp, Mechanical Engineering Publication,. Vol. 2:1235. 25. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3):426–428. 26. Mohlin U. B. and C. Alfredsson (1990) Fibre deformation and its implications in pulp characterization. Nordic Pulp and Paper Research Journal 4:172–179. 27. Olson J., B. Allison, T. Friesen and C. Peters (2001) Fibre fractionation for high porosity sack kraft paper. Tappi Journal peer review paper 84(6):1–10. 28. Page, D. H. (1969) A theory for the tensile strength of paper. Tappi Journal 52(4):674–679. 29. Pala H., M. A. Lemos, M. Mota and F. M. Gama (2001) Enzymatic upgrade of old paperboard containers. Enzyme and Microbial Technology 29:274–279. 30. Poorna, C. A. and P. Prema (2007) Production of cellulose-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation. Bioresource Technology 98:485–490. 31. Phipps J. (1994) The effects of recycling on the strength properties of paper. Paper Technology. july/august 34–40. 32. Seth R. S. (1999) Beating and refining response of some reinforcement pulps. Tappi Journal 82(3):147–154. 33. Scallan, A. M. and J. Grignon (1979) The effect of cations on pulp and paper properties. Svensk Papperstidning 82(2):40–47. 34. Schöning A.G., G. Johansson (1965) Absorptiometric detemination of acid-soluble lignin in semichemical bisulfite pulp and in some woods and plants. Svensk Papperstidn 68:607–613. 35. Sihtola, H., B. Kyrklund, L. Laamanen and I. Palenius (1963) Comparison and Conversion of Viscosity and DP-Values Determined By Different. MethodsPaperi ja puu 45:225. 36. Stork G., H. Pereira, T. M. Wood, E. M. Düsterhöft, A. Toft, and J. Puls (1995) Upgrading recycled pulps using enzymatic treatment. Tappi Journal 78(2):79–88. 37. Weston, J. D. W. and D. A. Guest (1985) The importance of cell wall structure in recycling fibres. Paper Technology and Industry 26(27):309–317. 38. Wistara N. and R. A. Young (1999) Properties and treatments of pulps from recycled paper. Part Ⅰ. Physical and chemical properties of pulps. Cellulose 6:291–324. 39. Wood T. M. and K. M. Bhat (1984) Methods for measuring cellulose activities. Methods in enzymology 160:87–116.
摘要: 
本論文探討紙張的回收-利用-再生過程中纖維性質及紙張性質的變化,以做為後續纖維及紙張性質改良之參考依據,並分別繼續使用鹼處理、酵素處理及添加CMC的方法將再生後纖維改質,以期達到增強或改善紙張性質,進而提高再生纖維的使用範圍、延長纖維的使用時間延續纖維之生命週期與減少利用原生紙漿之多項目的。
纖維經過回收後力學性質,包括破裂強度、抗張強度、耐折強度及撕裂強度等均會產生不良的影響,其主要原因為纖維經重複的回收-使用-再生後,纖維之性質產生了表面角質化(膨潤性),導致活性羥基含量減少了3%,因而減少纖維與纖維間的結合性、保水值等在裱面紙板及瓦楞芯紙分別下降了45及30%,纖維長度也有縮短的現象。由纖維的化學組成來看,大部分的成分會隨著回收次數而有小部分下降,如木質素(2.7及3.1%)、醇苯抽出(0.03及1.0%)、灰分(0.01及5.12%),但是其α-纖維素則在第三次回收後大幅度降解,裱面紙板及瓦楞芯紙降幅分別為10.0及2.99%。
以鹼處理能有效提升纖維保水值,裱面紙板以20%氫氧化鈉、70℃熱水處理120 min後,使其保水值提升70%。而瓦楞芯紙經氫氧化鈉20%、70℃熱水處理30 min後亦可提升42%。再生纖維以熱水處理無論在溫度70或90℃,只要使用10%的氫氧化鈉以熱水處理30 min就能有效改善紙張性質。
使用三種酵素LDI、CS及LBR以3U/g絕乾漿重處理再生紙漿,能使紙張力學性質提升,不過若是酵素用量在5U/g絕乾漿重時,反而會產生相反效果,使纖維遭受破壞而使纖維的強度下降。在酵素的處理功效上以LDI處理的紙漿纖維在各項力學強度的表現上最好,CS的效果最差,LBR居中,其中CS在在較高濃度酵素時,強度則維持平甚至有些微下降,而且力學性質的提升也不明顯,原因在於其所含纖維素分解活性CMCase及木醣分解酵性xylanase太高所致,因此使得各項性質呈現不良的情形。
添加CMC對於纖維本身的保水值、強度值沒有明顯的幫助,但是能有效補強纖維,而且幫助回收纖維吸住水分使保水值提升,使得纖維強度得以提升,因此在四種紙力的表現上,呈現類似添加紙力增強劑的效果,在耐折強度上,甚至超越第一次回收的纖維強度(裱面紙板及瓦楞芯紙分別1103及1316%),其他紙力也有很好的提升,因此CMC在本試驗中所能提供的紙張力學性質比鹼處理及酵素處理佳。

In order to modify the recycled fiber, this study was to investigate the variations of the fiber and paper properties after paper recycling, reusing, and re-processing. Three methods for upgrading the recycled fiber, included alkaline socking, enzyme treatment, and adding carboxymethyl cellulose (CMC) to improve the fiber strength, extend the fiber service life, and reduce the use of the virgin pulp.

The mechanical behavior of the fiber after recycling, including burst strength, tensile strength, folding endurance and tear index, became worse. The reason is that hornification occurs on the surface of the fiber to reduce the interfiber bonding strength. Consequently the content of hydroxyl group in the fiber was reduced by 3%. The water retention value (WRV) of the linerboard and corrugated medium was also reduced by 45% and 30% respectively, and the decrease of the fiber length can be found. Most chemical components of the fiber in the linerboard and corrugated medium decreased slightly with number of recycling times, such as lignin (2.7% and 3.1% ), solvent extractives (0.03% and 1%), and ash content (0.01% and 5.12%), but a large quantity of alpha-cellulose was reduced by around 10% and 2.99% respectively at the third recycling.

Alkaline soaking can enhance the WRV effectively. For linerboard, soaking with 20% NaOH in the hot water at 70oC for 120 min can increase 70% of WRV for linerboard and 42% for corrugated medium (soaking for 30 min). This treatment can recover the fiber flexible and increase the paper strength. According to the experimental results, paper properties can be improved effectively by soaking with 10% NaOH in the hot water at 70oC or 90oC for 30 min only.

Three enzymes, LDI, CS and LBR, with a dosage of 3U/g o.d. pulp can enhance the mechanical behavior of paper. However, at a dosage of 5U/g o.d. pulp, the fiber was damaged to reduce the strength. LDI is the best enzyme to enhance the mechanical behavior of paper, and the worse one is CS. Especially treating at a higher dosage of CS enzyme, the improvement of the mechanical behavior of paper was not obvious, because of a higher concentration of CMCase and xylanase in CS.

Adding CMC can not enhance directly the WRV and fiber strength of the fiber obviously, but it can reinforce the fiber strength. The CMC can assist the recycling fiber in holding water to increase the WRV and fiber strength. It is similar to add the strength additive for enhancing the burst strength, tensile strength, fold endurance and tear strength. For example, increase of the folding endurance strength of the fiber by adding the CMC was higher (e.g., the strength of the linerboard and corrugated medium increased 1103% and 1316% respectively.) than that of first recycling fiber. Other mechanical behavior was also improved. Therefore, adding CMC is better than the alkali soaking and enzyme treatment for enhancing the paper strength.
URI: http://hdl.handle.net/11455/65994
Appears in Collections:森林學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.